Enhancing Case-based Reasoning Approach using Incremental Learning Model for Automatic Adaptation of Classifiers in Mobile Phishing Detection

San Kyaw Zaw, S. Vasupongayya
{"title":"Enhancing Case-based Reasoning Approach using Incremental Learning Model for Automatic Adaptation of Classifiers in Mobile Phishing Detection","authors":"San Kyaw Zaw, S. Vasupongayya","doi":"10.2991/ijndc.k.200515.001","DOIUrl":null,"url":null,"abstract":"Nowadays, millions of mobile phone users over the world are put at risk by phishing while more than 3.8 billion smartphones are estimated to be used in 2020 [1]. As a consequence, the security of these devices becomes a top priority. Moreover, mobile devices become the primary means of communication and information access [2]. Thus, in our prior work [3], some analyses on the literatures of phishing detection are performed and identified the important features for the mobile phishing detection. Then, the adaptive mobile phishing detection model is proposed in another prior work [4] by using a Case-based Reasoning (CBR) approach. In our previous work [4], the experiments were conducted to demonstrate the design decision of our proposed model and to verify the performance in handling the concept drift. However, the main challenge faced by the CBR approach is learning a new case in order to adapt the system to a new phishing pattern. The mismatching input features with the existing cases in the case-base was lacking in our prior work [4]. In this work, the incremental learning model for the adaptation to the new examples to the case-base is proposed.","PeriodicalId":318936,"journal":{"name":"Int. J. Networked Distributed Comput.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Networked Distributed Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/ijndc.k.200515.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nowadays, millions of mobile phone users over the world are put at risk by phishing while more than 3.8 billion smartphones are estimated to be used in 2020 [1]. As a consequence, the security of these devices becomes a top priority. Moreover, mobile devices become the primary means of communication and information access [2]. Thus, in our prior work [3], some analyses on the literatures of phishing detection are performed and identified the important features for the mobile phishing detection. Then, the adaptive mobile phishing detection model is proposed in another prior work [4] by using a Case-based Reasoning (CBR) approach. In our previous work [4], the experiments were conducted to demonstrate the design decision of our proposed model and to verify the performance in handling the concept drift. However, the main challenge faced by the CBR approach is learning a new case in order to adapt the system to a new phishing pattern. The mismatching input features with the existing cases in the case-base was lacking in our prior work [4]. In this work, the incremental learning model for the adaptation to the new examples to the case-base is proposed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于案例推理方法的增量学习模型在移动网络钓鱼检测中自动适应分类器
如今,全球数以百万计的手机用户面临网络钓鱼的风险,而据估计,2020年将有超过38亿部智能手机被使用[1]。因此,这些设备的安全性成为重中之重。此外,移动设备已成为人们沟通和获取信息的主要手段[2]。因此,在我们之前的工作[3]中,我们对网络钓鱼检测的文献进行了一些分析,并确定了移动网络钓鱼检测的重要特征。然后,先前的另一项工作[4]采用基于案例推理(Case-based Reasoning, CBR)的方法提出了自适应移动网络钓鱼检测模型。在我们之前的工作[4]中,我们进行了实验来证明我们提出的模型的设计决策,并验证了处理概念漂移的性能。然而,CBR方法面临的主要挑战是学习新的案例,以便使系统适应新的网络钓鱼模式。我们之前的工作[4]缺少与案例库中已有案例不匹配的输入特征。在这项工作中,提出了一种增量学习模型,用于适应新的案例库。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive Parameter Tuning for Constructing Storage Tiers in an Autonomous Distributed Storage System Application of 2‑gram and 3‑gram to Obtain Factor Scores of Statements Posted at Q&A Sites Bountychain: Toward Decentralizing a Bug Bounty Program with Blockchain and IPFS Secure Communications by Tit-for-Tat Strategy in Vehicular Networks Vehicle Platooning Systems: Review, Classification and Validation Strategies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1