Preventing Identity Attacks in RFID Backscatter Communication Systems: A Physical-layer Approach

Ahsan Mehmood, Waqas Aman, Muhammad Mahboob Ur Rahman, M. Imran, Q. Abbasi
{"title":"Preventing Identity Attacks in RFID Backscatter Communication Systems: A Physical-layer Approach","authors":"Ahsan Mehmood, Waqas Aman, Muhammad Mahboob Ur Rahman, M. Imran, Q. Abbasi","doi":"10.1109/UCET51115.2020.9205427","DOIUrl":null,"url":null,"abstract":"This work considers identity attack on a radio-frequency identification (RFID)-based backscatter communication system. Specifically, we consider a singlereader, single-tag RFID system whereby the reader and the tag undergo two-way signaling which enables the reader to extract the tag ID in order to authenticate the legitimate tag (L-tag). We then consider a scenario whereby a malicious tag (M-tag)—having the same ID as the Ltag programmed in its memory by a wizard—attempts to deceive the reader by pretending to be the L-tag. To this end, we counter the identity attack by exploiting the non-reciprocity of the end-to-end channel (i.e., the residual channel) between the reader and the tag as the fingerprint of the tag. The passive nature of the tag(s) (and thus, lack of any computational platform at the tag) implies that the proposed light-weight physical-layer authentication method is implemented at the reader. To be concrete, in our proposed scheme, the reader acquires the raw data via two-way (challenge-response) message exchange mechanism, does least-squares estimation to extract the fingerprint, and does binary hypothesis testing to do authentication. We also provide closed-form expressions for the two error probabilities of interest (i.e., false alarm and missed detection). Simulation results attest to the efficacy of the proposed method.","PeriodicalId":163493,"journal":{"name":"2020 International Conference on UK-China Emerging Technologies (UCET)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on UK-China Emerging Technologies (UCET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UCET51115.2020.9205427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This work considers identity attack on a radio-frequency identification (RFID)-based backscatter communication system. Specifically, we consider a singlereader, single-tag RFID system whereby the reader and the tag undergo two-way signaling which enables the reader to extract the tag ID in order to authenticate the legitimate tag (L-tag). We then consider a scenario whereby a malicious tag (M-tag)—having the same ID as the Ltag programmed in its memory by a wizard—attempts to deceive the reader by pretending to be the L-tag. To this end, we counter the identity attack by exploiting the non-reciprocity of the end-to-end channel (i.e., the residual channel) between the reader and the tag as the fingerprint of the tag. The passive nature of the tag(s) (and thus, lack of any computational platform at the tag) implies that the proposed light-weight physical-layer authentication method is implemented at the reader. To be concrete, in our proposed scheme, the reader acquires the raw data via two-way (challenge-response) message exchange mechanism, does least-squares estimation to extract the fingerprint, and does binary hypothesis testing to do authentication. We also provide closed-form expressions for the two error probabilities of interest (i.e., false alarm and missed detection). Simulation results attest to the efficacy of the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RFID反向散射通信系统中身份攻击的预防:一种物理层方法
本文研究了基于射频识别(RFID)的反向散射通信系统中的身份攻击问题。具体来说,我们考虑一个单阅读器、单标签RFID系统,其中阅读器和标签接受双向信号,使阅读器能够提取标签ID,以验证合法标签(l -标签)。然后,我们考虑这样一种场景:恶意标签(m标签)——与向导在其内存中编程的Ltag具有相同的ID——试图通过假装是l标签来欺骗读取器。为此,我们通过利用读取器和标签之间端到端通道(即剩余通道)的非互易性作为标签的指纹来对抗身份攻击。标签的被动特性(因此,标签上缺乏任何计算平台)意味着所建议的轻量级物理层身份验证方法是在阅读器上实现的。具体来说,在我们提出的方案中,读者通过双向(挑战-响应)消息交换机制获取原始数据,进行最小二乘估计提取指纹,并进行二元假设检验进行身份验证。我们还提供了两种感兴趣的错误概率(即误报和漏检)的封闭形式表达式。仿真结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Smart Wristband for Gesture Recognition Foldable, Eco-Friendly and Low-Cost Microfluidic Paper-Based Capacitive Droplet Sensor A Wearable Health Monitoring System A Novel Approach for Classifying Diabetes’ Patients Based on Imputation and Machine Learning Towards Holographic Beam-Forming Metasurface Technology for Next Generation CubeSats
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1