Image Dehazing With Contextualized Attentive U-NET

Yean-Wei Lee, L. Wong, John See
{"title":"Image Dehazing With Contextualized Attentive U-NET","authors":"Yean-Wei Lee, L. Wong, John See","doi":"10.1109/ICIP40778.2020.9190725","DOIUrl":null,"url":null,"abstract":"Haze, which occurs due to the accumulation of fine dust or smoke particles in the atmosphere, degrades outdoor imaging, resulting in reduced attractiveness of outdoor photography and the effectiveness of vision-based systems. In this paper, we present an end-to-end convolutional neural network for image dehazing. Our proposed U-Net based architecture employs Squeeze-and-Excitation (SE) blocks at the skip connections to enforce channel-wise attention and parallelized dilated convolution blocks at the bottleneck to capture both local and global context, resulting in a richer representation of the image features. Experimental results demonstrate the effectiveness of the proposed method in achieving state-of-the-art performance on the benchmark SOTS dataset.","PeriodicalId":405734,"journal":{"name":"2020 IEEE International Conference on Image Processing (ICIP)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP40778.2020.9190725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Haze, which occurs due to the accumulation of fine dust or smoke particles in the atmosphere, degrades outdoor imaging, resulting in reduced attractiveness of outdoor photography and the effectiveness of vision-based systems. In this paper, we present an end-to-end convolutional neural network for image dehazing. Our proposed U-Net based architecture employs Squeeze-and-Excitation (SE) blocks at the skip connections to enforce channel-wise attention and parallelized dilated convolution blocks at the bottleneck to capture both local and global context, resulting in a richer representation of the image features. Experimental results demonstrate the effectiveness of the proposed method in achieving state-of-the-art performance on the benchmark SOTS dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
情境化关注U-NET图像去雾
雾霾是由于大气中细小粉尘或烟雾颗粒的积累而产生的,它会降低户外成像的质量,从而降低户外摄影的吸引力和基于视觉的系统的有效性。在本文中,我们提出了一个端到端卷积神经网络用于图像去雾。我们提出的基于U-Net的架构在跳过连接处使用挤压和激励(SE)块来强制通道关注,在瓶颈处使用并行扩展卷积块来捕获局部和全局上下文,从而产生更丰富的图像特征表示。实验结果表明,该方法在基准SOTS数据集上取得了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Adversarial Active Learning With Model Uncertainty For Image Classification Emotion Transformation Feature: Novel Feature For Deception Detection In Videos Object Segmentation In Electrical Impedance Tomography For Tactile Sensing A Syndrome-Based Autoencoder For Point Cloud Geometry Compression A Comparison Of Compressed Sensing And Dnn Based Reconstruction For Ghost Motion Imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1