{"title":"Positioning in resource-constrained ultra low-power Wireless Sensor Networks","authors":"Ville Kaseva, T. Hämäläinen, Marko Hännikäinen","doi":"10.1109/UPINLBS.2010.5654345","DOIUrl":null,"url":null,"abstract":"Wireless Sensor Networks (WSNs) consist of densely deployed, independent, and collaborating low cost sensor nodes. The nodes are highly resource-constrained in terms of energy, processing, and data storage capacity. Thus, the protocols used in WSNs must be highly energy-efficient. WSN communication protocols achieving the lowest power consumption minimize radio usage by accurately synchronizing transmissions and receptions with their neighbors. In this paper, we show how network signaling frames of state-of-the-art synchronized communication protocols for low-power WSNs supporting mobile nodes can be used for positioning. We derive mathematical models for node power consumption analysis. The models provide a tool for estimating what kind of network lifetimes can be expected when average positioned node speed, the amount of anchor nodes required by the location estimation algorithm, and the location refresh rate required by the application are known. The presented analysis results are based on two kinds of node hardware: real node hardware prototypes having no Received Signal Strength Indicator (RSSI) support and typical values of an integrated chip using an IEEE 802.15.4 compliant radio with RSSI.","PeriodicalId":373653,"journal":{"name":"2010 Ubiquitous Positioning Indoor Navigation and Location Based Service","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Ubiquitous Positioning Indoor Navigation and Location Based Service","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UPINLBS.2010.5654345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Wireless Sensor Networks (WSNs) consist of densely deployed, independent, and collaborating low cost sensor nodes. The nodes are highly resource-constrained in terms of energy, processing, and data storage capacity. Thus, the protocols used in WSNs must be highly energy-efficient. WSN communication protocols achieving the lowest power consumption minimize radio usage by accurately synchronizing transmissions and receptions with their neighbors. In this paper, we show how network signaling frames of state-of-the-art synchronized communication protocols for low-power WSNs supporting mobile nodes can be used for positioning. We derive mathematical models for node power consumption analysis. The models provide a tool for estimating what kind of network lifetimes can be expected when average positioned node speed, the amount of anchor nodes required by the location estimation algorithm, and the location refresh rate required by the application are known. The presented analysis results are based on two kinds of node hardware: real node hardware prototypes having no Received Signal Strength Indicator (RSSI) support and typical values of an integrated chip using an IEEE 802.15.4 compliant radio with RSSI.