A Method for Counting People in Crowded Scenes

Donatello Conte, P. Foggia, G. Percannella, Francesco Tufano, M. Vento
{"title":"A Method for Counting People in Crowded Scenes","authors":"Donatello Conte, P. Foggia, G. Percannella, Francesco Tufano, M. Vento","doi":"10.1109/AVSS.2010.78","DOIUrl":null,"url":null,"abstract":"This paper presents a novel method to count people forvideo surveillance applications. Methods in the literatureeither follow a direct approach, by first detecting people andthen counting them, or an indirect approach, by establishinga relation between some easily detectable scene featuresand the estimated number of people. The indirect approachis considerably more robust, but it is not easy to take intoaccount such factors as perspective or people groups withdifferent densities.The proposed technique, while based on the indirect approach,specifically addresses these problems; furthermoreit is based on a trainable estimator that does not requirean explicit formulation of a priori knowledge about the perspectiveand density effects present in the scene at hand.In the experimental evaluation, the method has beenextensively compared with the algorithm by Albiol et al.,which provided the highest performance at the PETS 2009contest on people counting. The experimentation has usedthe public PETS 2009 datasets. The results confirm that theproposed method improves the accuracy, while retaining therobustness of the indirect approach.","PeriodicalId":415758,"journal":{"name":"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance","volume":"139 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"87","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2010.78","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 87

Abstract

This paper presents a novel method to count people forvideo surveillance applications. Methods in the literatureeither follow a direct approach, by first detecting people andthen counting them, or an indirect approach, by establishinga relation between some easily detectable scene featuresand the estimated number of people. The indirect approachis considerably more robust, but it is not easy to take intoaccount such factors as perspective or people groups withdifferent densities.The proposed technique, while based on the indirect approach,specifically addresses these problems; furthermoreit is based on a trainable estimator that does not requirean explicit formulation of a priori knowledge about the perspectiveand density effects present in the scene at hand.In the experimental evaluation, the method has beenextensively compared with the algorithm by Albiol et al.,which provided the highest performance at the PETS 2009contest on people counting. The experimentation has usedthe public PETS 2009 datasets. The results confirm that theproposed method improves the accuracy, while retaining therobustness of the indirect approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种在拥挤场景中计算人数的方法
本文提出了一种视频监控中人数统计的新方法。文献中的方法要么采用直接方法,先检测人,然后对他们进行计数,要么采用间接方法,通过在一些容易检测的场景特征和估计的人数之间建立关系。间接方法相当可靠,但不容易考虑诸如视角或人口密度不同的人群等因素。拟议的技术虽然基于间接方法,但具体解决了这些问题;此外,它基于一个可训练的估计器,不需要关于当前场景中存在的视角和密度效应的先验知识的明确表述。在实验评估中,该方法与Albiol等人的算法进行了广泛的比较,该算法在2009年的PETS比赛中提供了最高的计数性能。实验使用了2009年公共宠物数据集。结果表明,该方法在保持间接方法的稳健性的同时,提高了精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Statistical Background Modeling: An Edge Segment Based Moving Object Detection Approach Who, what, when, where, why and how in video analysis: an application centric view Trajectory Based Activity Discovery Local Abnormality Detection in Video Using Subspace Learning Functionality Delegation in Distributed Surveillance Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1