Non-Unitary Joint Block Diagonalization of matrices using a Levenberg-Marquardt algorithm

O. Cherrak, H. Ghennioui, El Hossein Abarkan, N. Thirion-Moreau
{"title":"Non-Unitary Joint Block Diagonalization of matrices using a Levenberg-Marquardt algorithm","authors":"O. Cherrak, H. Ghennioui, El Hossein Abarkan, N. Thirion-Moreau","doi":"10.5281/ZENODO.43369","DOIUrl":null,"url":null,"abstract":"This communication addresses the problem of the Non-Unitary Joint Block Diagonalization (NU - JBD) of a given set of complexmatrices. This problemoccurs in various fields of applications, among which is the blind separation of convolutive mixtures of sources. We present a new method for the NU - JBD based on the Levenberg-Marquardt algorithm (LMA). Our algorithm uses a numerical diagram of optimization which requires the calculation of the complex Hessian matrices. The main advantages of the proposed method stem from the LMA properties: it is powerful, stable and more robust. Computer simulations are provided in order to illustrate the good behavior of the proposed method in different contexts. Two cases are studied: in the first scenario, a set of exactly block-diagonal matrices are considered, then these matrices are progressively perturbed by an additive gaussian noise. Finally, this new NU - JBD algorithm is compared to others put forward in the literature: one based on an optimal step-size relative gradient-descent algorithm [1] and one based on a nonlinear conjugate gradient algorithm [2]. This comparison emphasizes the good behavior of the proposed method.","PeriodicalId":400766,"journal":{"name":"21st European Signal Processing Conference (EUSIPCO 2013)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"21st European Signal Processing Conference (EUSIPCO 2013)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.43369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This communication addresses the problem of the Non-Unitary Joint Block Diagonalization (NU - JBD) of a given set of complexmatrices. This problemoccurs in various fields of applications, among which is the blind separation of convolutive mixtures of sources. We present a new method for the NU - JBD based on the Levenberg-Marquardt algorithm (LMA). Our algorithm uses a numerical diagram of optimization which requires the calculation of the complex Hessian matrices. The main advantages of the proposed method stem from the LMA properties: it is powerful, stable and more robust. Computer simulations are provided in order to illustrate the good behavior of the proposed method in different contexts. Two cases are studied: in the first scenario, a set of exactly block-diagonal matrices are considered, then these matrices are progressively perturbed by an additive gaussian noise. Finally, this new NU - JBD algorithm is compared to others put forward in the literature: one based on an optimal step-size relative gradient-descent algorithm [1] and one based on a nonlinear conjugate gradient algorithm [2]. This comparison emphasizes the good behavior of the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用Levenberg-Marquardt算法求解矩阵的非酉联合块对角化
本文讨论了给定复矩阵集的非酉联合块对角化问题。这个问题在各个应用领域都存在,其中之一就是对卷积混合源的盲目分离。提出了一种基于Levenberg-Marquardt算法(LMA)的NU - JBD新方法。我们的算法使用优化的数值图,这需要计算复杂的Hessian矩阵。该方法的主要优点来自于LMA的特性:它功能强大、稳定且鲁棒性更强。为了说明该方法在不同环境下的良好性能,给出了计算机仿真。研究了两种情况:在第一种情况下,考虑一组完全对角块矩阵,然后这些矩阵被加性高斯噪声逐步扰动。最后,将NU - JBD算法与文献中提出的基于最优步长相对梯度下降算法[1]和基于非线性共轭梯度算法[2]的算法进行比较。这种比较强调了所提出的方法的良好性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Iterative algorithms for unbiased FIR state estimation in discrete time Detection of clipping in coded speech signals Primary emitter localization using smartly initialized Metropolis-Hastings algorithm Online multi-speaker tracking using multiple microphone arrays informed by auditory scene analysis Fast diffraction-pattern matching for object detection and recognition in digital holograms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1