The role of atlases and multi-atlases in brain tissue segmentation based on multispectral magnetic resonance image data

David Iclanzan, R. Lung, Zsolt Levente Kucsván, Béla Surányi, Levente Kovács, László Szilágyi
{"title":"The role of atlases and multi-atlases in brain tissue segmentation based on multispectral magnetic resonance image data","authors":"David Iclanzan, R. Lung, Zsolt Levente Kucsván, Béla Surányi, Levente Kovács, László Szilágyi","doi":"10.1109/africon51333.2021.9570952","DOIUrl":null,"url":null,"abstract":"Atlas assisted image segmentation has been quite popular in medical imaging during the last two decades. The atlas is able to provide prior information on the imaged organ’s shape, appearance, and local texture or intensity distribution. In case of segmenting images via pixelwise classification, the final segmentation result is obtained through a fusion of the classification outcome with the local atlas information. In other words, the atlas guides the classifier towards the shape of local structures normally situated at the given location. This paper proposes to demonstrate the advantages a multi-atlas can bring in a segmentation process of the main tissues in infant brain based on multi-spectral MRI records. Three supervised machine learning methods are deployed to segment brain tissues, with and without the use of the atlas. Differences are evaluated using statistical accuracy indicators. Atlases improved the overall segmentation accuracy by 2.5-3.5%, depending on the deployed classifier method.","PeriodicalId":170342,"journal":{"name":"2021 IEEE AFRICON","volume":"38 11","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE AFRICON","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/africon51333.2021.9570952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Atlas assisted image segmentation has been quite popular in medical imaging during the last two decades. The atlas is able to provide prior information on the imaged organ’s shape, appearance, and local texture or intensity distribution. In case of segmenting images via pixelwise classification, the final segmentation result is obtained through a fusion of the classification outcome with the local atlas information. In other words, the atlas guides the classifier towards the shape of local structures normally situated at the given location. This paper proposes to demonstrate the advantages a multi-atlas can bring in a segmentation process of the main tissues in infant brain based on multi-spectral MRI records. Three supervised machine learning methods are deployed to segment brain tissues, with and without the use of the atlas. Differences are evaluated using statistical accuracy indicators. Atlases improved the overall segmentation accuracy by 2.5-3.5%, depending on the deployed classifier method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多谱磁共振图像数据的图谱和多图谱在脑组织分割中的作用
在过去的二十年里,Atlas辅助图像分割在医学成像中非常流行。该图谱能够提供成像器官的形状、外观和局部纹理或强度分布的先验信息。在像素分类分割图像时,将分类结果与局部地图集信息融合得到最终的分割结果。换句话说,地图集引导分类器朝向通常位于给定位置的局部结构的形状。本文提出了基于多谱MRI记录的多图谱在婴儿脑主要组织分割过程中所具有的优势。使用和不使用图谱,部署了三种监督机器学习方法来分割脑组织。使用统计准确性指标评估差异。根据部署的分类器方法,Atlases将整体分割精度提高了2.5-3.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reducing Sensory Overstimulation in UE Usage IEEE AFRICON 2021 [Copyright notice] Mobile Application for Gate Pass Management System Enhancement Wireless sensor network for water pipe corrosion monitoring Metasurface based MIMO Microstrip Antenna with Reduced Mutual Coupling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1