Fault diagnosis of power electronic based on multi-resolution analysis and support vector machine

Jianjun Zhao, Xiao-guang Gu, Heng Yu, W. Yan
{"title":"Fault diagnosis of power electronic based on multi-resolution analysis and support vector machine","authors":"Jianjun Zhao, Xiao-guang Gu, Heng Yu, W. Yan","doi":"10.1109/CINC.2010.5643877","DOIUrl":null,"url":null,"abstract":"The wavelet multi-resolution analysis (MRA) and support vector machine (SVM) are used in the fault diagnosis of power electronic. First, the paper use the wavelet MRA to deal with the characteristics of power electronic fault signal, and then identifies the fault diagnosis by the multi-class fault classifier based on SVM. The simulation results show the correctness and effectiveness of the method.","PeriodicalId":227004,"journal":{"name":"2010 Second International Conference on Computational Intelligence and Natural Computing","volume":"213 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Second International Conference on Computational Intelligence and Natural Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CINC.2010.5643877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The wavelet multi-resolution analysis (MRA) and support vector machine (SVM) are used in the fault diagnosis of power electronic. First, the paper use the wavelet MRA to deal with the characteristics of power electronic fault signal, and then identifies the fault diagnosis by the multi-class fault classifier based on SVM. The simulation results show the correctness and effectiveness of the method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多分辨率分析和支持向量机的电力电子故障诊断
将小波多分辨率分析(MRA)和支持向量机(SVM)应用于电力电子故障诊断。本文首先利用小波核磁共振分析对电力电子故障信号特征进行处理,然后利用基于支持向量机的多类故障分类器进行故障诊断识别。仿真结果表明了该方法的正确性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evolutionary design of ANN structure using genetic algorithm Performance analysis of spread spectrum communication system in fading enviornment and Interference Comprehensive evaluation of forest industries based on rough sets and artificial neural network A new descent algorithm with curve search rule for unconstrained minimization A multi-agent simulation for intelligence economy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1