EventTimer: Fast and Accurate Event-Based Dynamic Timing Analysis

Zuodong Zhang, Zi-Jing Guo, Yibo Lin, Runsheng Wang, Ru Huang
{"title":"EventTimer: Fast and Accurate Event-Based Dynamic Timing Analysis","authors":"Zuodong Zhang, Zi-Jing Guo, Yibo Lin, Runsheng Wang, Ru Huang","doi":"10.23919/DATE54114.2022.9774642","DOIUrl":null,"url":null,"abstract":"As the transistor shrinks to nanoscale, the overhead of ensuring circuit functionality becomes extremely large due to the increasing timing variations. Thus, better-than-worst-case design (BTWC) has attracted more and more attention. Many of these techniques utilize dynamic timing slack (DTS) and activity information for design optimization and runtime tuning. Existing DTS computation methods are essentially a modification to the worst-case delay information, which cannot guarantee exact DTS and activity simulation, causing performance degradation in timing optimization. Therefore, in this paper, we propose EventTimer, a dynamic timing analysis engine based on event propagation to accurately compute DTS and activity information. We evaluate its accuracy and efficiency on different benchmark circuits. The experimental results show that EventTimer can achieve exact DTS computation with high efficiency. And it also proves that EventTimer has good scalability with the circuit scale and the number of CPU threads, which make it possible to be used in the application-level analysis.","PeriodicalId":232583,"journal":{"name":"2022 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"198 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/DATE54114.2022.9774642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

As the transistor shrinks to nanoscale, the overhead of ensuring circuit functionality becomes extremely large due to the increasing timing variations. Thus, better-than-worst-case design (BTWC) has attracted more and more attention. Many of these techniques utilize dynamic timing slack (DTS) and activity information for design optimization and runtime tuning. Existing DTS computation methods are essentially a modification to the worst-case delay information, which cannot guarantee exact DTS and activity simulation, causing performance degradation in timing optimization. Therefore, in this paper, we propose EventTimer, a dynamic timing analysis engine based on event propagation to accurately compute DTS and activity information. We evaluate its accuracy and efficiency on different benchmark circuits. The experimental results show that EventTimer can achieve exact DTS computation with high efficiency. And it also proves that EventTimer has good scalability with the circuit scale and the number of CPU threads, which make it possible to be used in the application-level analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EventTimer:快速准确的基于事件的动态时序分析
当晶体管缩小到纳米级时,由于时间变化的增加,确保电路功能的开销变得非常大。因此,优于最坏情况设计(BTWC)越来越受到人们的关注。这些技术中有许多利用动态定时松弛(DTS)和活动信息进行设计优化和运行时调优。现有的DTS计算方法本质上是对最坏情况延迟信息的修改,不能保证准确的DTS和活动模拟,导致时序优化性能下降。为此,本文提出了一种基于事件传播的动态时序分析引擎EventTimer来精确计算DTS和活动信息。在不同的基准电路上对其精度和效率进行了评估。实验结果表明,EventTimer可以实现高精度的DTS计算。实验还证明了EventTimer在电路规模和CPU线程数上具有良好的可扩展性,使其在应用级分析中应用成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DIET: A Dynamic Energy Management Approach for Wearable Health Monitoring Devices NPU-Accelerated Imitation Learning for Thermal- and QoS-Aware Optimization of Heterogeneous Multi-Cores A Precision-Scalable Energy-Efficient Bit-Split-and-Combination Vector Systolic Accelerator for NAS-Optimized DNNs on Edge coxHE: A software-hardware co-design framework for FPGA acceleration of homomorphic computation HELCFL: High-Efficiency and Low-Cost Federated Learning in Heterogeneous Mobile-Edge Computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1