{"title":"Likeness-Based dissimilarity measures for Gaussian Mixture Reduction and Data Fusion","authors":"A. D'Ortenzio, C. Manes","doi":"10.23919/fusion49465.2021.9626978","DOIUrl":null,"url":null,"abstract":"In many practical contexts, Gaussian Mixtures are used as density approximators due to their versatility and representation capabilities. In some scenarios, it might be convenient to approximate a set of Gaussian densities with a single one, according to criteria which aim to preserve information while reducing the model complexity. This task can be seen as a particular case of the Gaussian Mixture Reduction problem, where the goal is to find a mixture of reduced size yielding the least dissimilarity from the original mixture. From a different perspective, this can be interpreted as a data fusion process, where several Gaussian densities are fused into one. In this work, an information-theoretic class of measures will be explored in the analytical and numerical properties in order to provide insights on their nature when adopted in a Gaussian mixture reduction or data fusion process.","PeriodicalId":226850,"journal":{"name":"2021 IEEE 24th International Conference on Information Fusion (FUSION)","volume":"40 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 24th International Conference on Information Fusion (FUSION)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/fusion49465.2021.9626978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
In many practical contexts, Gaussian Mixtures are used as density approximators due to their versatility and representation capabilities. In some scenarios, it might be convenient to approximate a set of Gaussian densities with a single one, according to criteria which aim to preserve information while reducing the model complexity. This task can be seen as a particular case of the Gaussian Mixture Reduction problem, where the goal is to find a mixture of reduced size yielding the least dissimilarity from the original mixture. From a different perspective, this can be interpreted as a data fusion process, where several Gaussian densities are fused into one. In this work, an information-theoretic class of measures will be explored in the analytical and numerical properties in order to provide insights on their nature when adopted in a Gaussian mixture reduction or data fusion process.