Performance of Scientific Simulations on QCT Developer Cloud: A Case Study of Molecular Dynamic and Quantum Chemistry Simulations

P. Madhavan, P. Young, Stephen Chang
{"title":"Performance of Scientific Simulations on QCT Developer Cloud: A Case Study of Molecular Dynamic and Quantum Chemistry Simulations","authors":"P. Madhavan, P. Young, Stephen Chang","doi":"10.1109/CSCloud.2017.54","DOIUrl":null,"url":null,"abstract":"We present direct performance measurements for four popular scientific simulations on the Knights Landing (KNL) platform. Performance numbers for Broadwell processors are provided for contrast. The applications (NAMD, LAMMPS, GROMACS and CP2K) were selected from among the ten most used in the QCT developer cloud as well as best representative of workloads used by many users and, given their diversity, should be representative of typical high performance computing workloads. All runs were performed with publicly available codes without modification and so results should be expected to improve as developers gain access to Knights Landing (KNL) processor. Current results are promising, with execution on a single KNL processor showing speedups up to 1.5x with respect to a dual socket Broadwell.","PeriodicalId":436299,"journal":{"name":"2017 IEEE 4th International Conference on Cyber Security and Cloud Computing (CSCloud)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 4th International Conference on Cyber Security and Cloud Computing (CSCloud)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSCloud.2017.54","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We present direct performance measurements for four popular scientific simulations on the Knights Landing (KNL) platform. Performance numbers for Broadwell processors are provided for contrast. The applications (NAMD, LAMMPS, GROMACS and CP2K) were selected from among the ten most used in the QCT developer cloud as well as best representative of workloads used by many users and, given their diversity, should be representative of typical high performance computing workloads. All runs were performed with publicly available codes without modification and so results should be expected to improve as developers gain access to Knights Landing (KNL) processor. Current results are promising, with execution on a single KNL processor showing speedups up to 1.5x with respect to a dual socket Broadwell.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
QCT开发者云上科学模拟的性能:以分子动力学和量子化学模拟为例
我们在骑士登陆(KNL)平台上为四种流行的科学模拟提供了直接的性能测量。提供Broadwell处理器的性能数据以供对比。这些应用程序(NAMD、LAMMPS、GROMACS和CP2K)是从QCT开发人员云中使用最多的十个应用程序中挑选出来的,也是许多用户使用的工作负载的最佳代表,考虑到它们的多样性,它们应该代表典型的高性能计算工作负载。所有运行都是在没有修改的情况下使用公开可用的代码执行的,因此随着开发人员获得骑士登陆(KNL)处理器的访问权限,结果应该会有所改善。目前的结果是有希望的,与双插槽Broadwell相比,在单个KNL处理器上的执行速度高达1.5倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Framework for the Information Classification in ISO 27005 Standard Finding the Best Box-Cox Transformation in Big Data with Meta-Model Learning: A Case Study on QCT Developer Cloud Distributed Shuffle Index in the Cloud: Implementation and Evaluation Performance Study of Ceph Storage with Intel Cache Acceleration Software: Decoupling Hadoop MapReduce and HDFS over Ceph Storage Advanced Fully Homomorphic Encryption Scheme Over Real Numbers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1