Comparison of different clasification algorithms using easily calculated features

Özgür Tomak, T. Kayikçioglu
{"title":"Comparison of different clasification algorithms using easily calculated features","authors":"Özgür Tomak, T. Kayikçioglu","doi":"10.1109/EBBT.2017.7956789","DOIUrl":null,"url":null,"abstract":"Telemedicine has started to be beneficial to patients in remote regions. It is very important to monitor the ECG signals of these patients with heart disorders. Developments in information technology have started to provide important contribution to the clinical decision support systems for early detection and diagnosis. This study aimed to be part of clinical decision support systems and used easily calculated features for detection of ECG arrhythmia. Different classification methods are compared using these features. The performance of the method is tested on data used obtained from the PhysioNet database.","PeriodicalId":293165,"journal":{"name":"2017 Electric Electronics, Computer Science, Biomedical Engineerings' Meeting (EBBT)","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Electric Electronics, Computer Science, Biomedical Engineerings' Meeting (EBBT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EBBT.2017.7956789","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Telemedicine has started to be beneficial to patients in remote regions. It is very important to monitor the ECG signals of these patients with heart disorders. Developments in information technology have started to provide important contribution to the clinical decision support systems for early detection and diagnosis. This study aimed to be part of clinical decision support systems and used easily calculated features for detection of ECG arrhythmia. Different classification methods are compared using these features. The performance of the method is tested on data used obtained from the PhysioNet database.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
比较不同的分类算法使用容易计算的特征
远程医疗已经开始对偏远地区的病人有益。心电信号的监测对这些心脏疾病患者具有十分重要的意义。信息技术的发展已经开始为早期发现和诊断的临床决策支持系统提供重要贡献。本研究旨在成为临床决策支持系统的一部分,并使用易于计算的特征来检测心电心律失常。利用这些特征比较了不同的分类方法。用从PhysioNet数据库中获得的数据对该方法的性能进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detection of injured kidney in computed tomography Predictive cruise control Effects of aerobic capacity, age and gender on brain neural matter Electromagnetic radiation interaction and pollution measurements Characterization of a bend sensor for neuroprosthetic applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1