Long Term Efficacy and Fate of a Right Ventricular Outflow Tract Replacement Using a Novel Developed Material with Optimized Biodegradation and Elasticity
K. Fujimoto, A. Yamawaki-Ogata, Y. Narita, A. Usui, K. Uto, M. Ebara
{"title":"Long Term Efficacy and Fate of a Right Ventricular Outflow Tract Replacement Using a Novel Developed Material with Optimized Biodegradation and Elasticity","authors":"K. Fujimoto, A. Yamawaki-Ogata, Y. Narita, A. Usui, K. Uto, M. Ebara","doi":"10.2139/ssrn.3640711","DOIUrl":null,"url":null,"abstract":"For decades, researchers have investigated the ideal material for clinical use in the cardiovascular field. Several substitute materials are used clinically, but each has drawbacks. Recently we developed poly(e-caprolactone-co-D,L-lactide) (P(CL-DLLA)) polymers with optimized biodegradation and elasticity by adjusting the CL/DLLA composition, and used these polymers in right ventricular outflow tract (RVOT) replacement to evaluate long-term efficacy and outcomes. This P(CL-DLLA) material was processed into a circular patch and used to replace a surgical defect in the RVOT of adult rats. Control rats were implanted with expanded polytetrafluoroethylene (ePTFE). Histologic evaluation was performed at 8, 24, and 48 weeks post-surgery. All animals survived the surgery with no aneurysm formation or thrombus. In all periods, ePTFE demonstrated fibrous tissue. In contrast, at 8 weeks P(CL-DLLA) showed infiltration of macrophages and fibroblast-like cells into the remaining material. At 24 weeks, P(CL-DLLA) was absorbed completely, and muscle-like tissue was present with positive staining for α-sarcomeric actinin and cTnT. At 48 weeks, the cTnT-positive area had increased. The P(CL-DLLA) with optimized elasticity and biodegradation induced cardiac regeneration throughout the 48-week study period. Future application of this material as a cardiovascular scaffold seems promising.","PeriodicalId":106645,"journal":{"name":"MatSciRN: Tissue Engineering (Topic)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MatSciRN: Tissue Engineering (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3640711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
For decades, researchers have investigated the ideal material for clinical use in the cardiovascular field. Several substitute materials are used clinically, but each has drawbacks. Recently we developed poly(e-caprolactone-co-D,L-lactide) (P(CL-DLLA)) polymers with optimized biodegradation and elasticity by adjusting the CL/DLLA composition, and used these polymers in right ventricular outflow tract (RVOT) replacement to evaluate long-term efficacy and outcomes. This P(CL-DLLA) material was processed into a circular patch and used to replace a surgical defect in the RVOT of adult rats. Control rats were implanted with expanded polytetrafluoroethylene (ePTFE). Histologic evaluation was performed at 8, 24, and 48 weeks post-surgery. All animals survived the surgery with no aneurysm formation or thrombus. In all periods, ePTFE demonstrated fibrous tissue. In contrast, at 8 weeks P(CL-DLLA) showed infiltration of macrophages and fibroblast-like cells into the remaining material. At 24 weeks, P(CL-DLLA) was absorbed completely, and muscle-like tissue was present with positive staining for α-sarcomeric actinin and cTnT. At 48 weeks, the cTnT-positive area had increased. The P(CL-DLLA) with optimized elasticity and biodegradation induced cardiac regeneration throughout the 48-week study period. Future application of this material as a cardiovascular scaffold seems promising.