{"title":"EVALUATION OF THE VITALITY OF A FLANGED CONNECTION WITH A STEEL TOWER STRUCTURE WITH ACCOUNT OF EXPERIMENTAL DETERMINATION OF AERODYNAMIC COEFFICIENTS","authors":"V. Erofeev, I. Samokhvalov","doi":"10.32326/1814-9146-2020-82-2-215-224","DOIUrl":null,"url":null,"abstract":"A numerical study of the survivability of the flange assembly is carried out upon reaching a critical load and in the presence of a defect in one of the design areas, taking into account the calculated values of the aerodynamic coefficients. An experiment is being carried out to determine the values of the wind load acting on the supporting legs of a metal tower. The calculation of the stressstrain state is performed using software system as SCAD Office and IDEA StatiCa 10.0. After calculating the forces in the core model of the structure, a threedimensional plate model of the assembly is formed and prepared for calculation.\n\nAccording to the results of the experiment, a graph was compiled with the values of aerodynamic coefficients, which were used in calculating the stressstrain state of the node. The analysis of the calculation results revealed that in the design (defectfree) state of the structure, the safety factor of the bearing units and elements is 35-40% (equivalent stresses were 165 MPa). If there is a defect in the metal structures of the belt in the region of the flange, the equivalent stresses increase to 247.6 MPa in the region of the cleavage (defective hole), thus, the margin in bearing capacity drops to 0.4%. As a result of the assessment of the survivability of the flange connection, it was revealed that the connection has a high potential survivability, in turn, the flange itself is able to work in the presence of some defects without reducing its bearing capacity to a critical level.\n\nThe aerodynamic coefficients obtained in this work will determine the wind load on this type of profile and can be used in design calculations of tower structures for wind loads.","PeriodicalId":340995,"journal":{"name":"Problems of strenght and plasticity","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Problems of strenght and plasticity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32326/1814-9146-2020-82-2-215-224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A numerical study of the survivability of the flange assembly is carried out upon reaching a critical load and in the presence of a defect in one of the design areas, taking into account the calculated values of the aerodynamic coefficients. An experiment is being carried out to determine the values of the wind load acting on the supporting legs of a metal tower. The calculation of the stressstrain state is performed using software system as SCAD Office and IDEA StatiCa 10.0. After calculating the forces in the core model of the structure, a threedimensional plate model of the assembly is formed and prepared for calculation.
According to the results of the experiment, a graph was compiled with the values of aerodynamic coefficients, which were used in calculating the stressstrain state of the node. The analysis of the calculation results revealed that in the design (defectfree) state of the structure, the safety factor of the bearing units and elements is 35-40% (equivalent stresses were 165 MPa). If there is a defect in the metal structures of the belt in the region of the flange, the equivalent stresses increase to 247.6 MPa in the region of the cleavage (defective hole), thus, the margin in bearing capacity drops to 0.4%. As a result of the assessment of the survivability of the flange connection, it was revealed that the connection has a high potential survivability, in turn, the flange itself is able to work in the presence of some defects without reducing its bearing capacity to a critical level.
The aerodynamic coefficients obtained in this work will determine the wind load on this type of profile and can be used in design calculations of tower structures for wind loads.