{"title":"Scalability evaluation of VPN technologies for secure container networking","authors":"Tom Goethals, D. Kerkhove, B. Volckaert, F. Turck","doi":"10.23919/CNSM46954.2019.9012673","DOIUrl":null,"url":null,"abstract":"For years, containers have been a popular choice for lightweight virtualization in the cloud. With the rise of more powerful and flexible edge devices, container deployment strategies have arisen that leverage the computational power of edge devices for optimal workload distribution. This move from a secure data center network to heterogenous public and private networks presents some issues in terms of security and network topology that can be partially solved by using a Virtual Private Network (VPN) to connect edge nodes to the cloud. In this paper, the scalability of VPN software is evaluated to determine if and how it can be used in large-scale clusters containing edge nodes. Benchmarks are performed to determine the maximum number of VPN-connected nodes and the influence of network degradation on VPN performance, primarily using traffic typical for edge devices generating IoT data. Some high level conclusions are drawn from the results, indicating that WireGuard is an excellent choice of VPN software to connect edge nodes in a cluster. Analysis of the results also shows the strengths and weaknesses of other VPN software.","PeriodicalId":273818,"journal":{"name":"2019 15th International Conference on Network and Service Management (CNSM)","volume":"62 11","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 15th International Conference on Network and Service Management (CNSM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CNSM46954.2019.9012673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
For years, containers have been a popular choice for lightweight virtualization in the cloud. With the rise of more powerful and flexible edge devices, container deployment strategies have arisen that leverage the computational power of edge devices for optimal workload distribution. This move from a secure data center network to heterogenous public and private networks presents some issues in terms of security and network topology that can be partially solved by using a Virtual Private Network (VPN) to connect edge nodes to the cloud. In this paper, the scalability of VPN software is evaluated to determine if and how it can be used in large-scale clusters containing edge nodes. Benchmarks are performed to determine the maximum number of VPN-connected nodes and the influence of network degradation on VPN performance, primarily using traffic typical for edge devices generating IoT data. Some high level conclusions are drawn from the results, indicating that WireGuard is an excellent choice of VPN software to connect edge nodes in a cluster. Analysis of the results also shows the strengths and weaknesses of other VPN software.