Weighted and robust incremental method for subspace learning

D. Skočaj, A. Leonardis
{"title":"Weighted and robust incremental method for subspace learning","authors":"D. Skočaj, A. Leonardis","doi":"10.1109/ICCV.2003.1238667","DOIUrl":null,"url":null,"abstract":"Visual learning is expected to be a continuous and robust process, which treats input images and pixels selectively. In this paper, we present a method for subspace learning, which takes these considerations into account. We present an incremental method, which sequentially updates the principal subspace considering weighted influence of individual images as well as individual pixels within an image. This approach is further extended to enable determination of consistencies in the input data and imputation of the values in inconsistent pixels using the previously acquired knowledge, resulting in a novel incremental, weighted and robust method for subspace learning.","PeriodicalId":131580,"journal":{"name":"Proceedings Ninth IEEE International Conference on Computer Vision","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"198","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Ninth IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2003.1238667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 198

Abstract

Visual learning is expected to be a continuous and robust process, which treats input images and pixels selectively. In this paper, we present a method for subspace learning, which takes these considerations into account. We present an incremental method, which sequentially updates the principal subspace considering weighted influence of individual images as well as individual pixels within an image. This approach is further extended to enable determination of consistencies in the input data and imputation of the values in inconsistent pixels using the previously acquired knowledge, resulting in a novel incremental, weighted and robust method for subspace learning.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
子空间学习的加权鲁棒增量方法
视觉学习被认为是一个连续的、鲁棒的过程,它有选择地处理输入图像和像素。在本文中,我们提出了一种考虑到这些因素的子空间学习方法。我们提出了一种增量方法,该方法考虑到单个图像以及图像内单个像素的加权影响,顺序更新主子空间。该方法进一步扩展到能够确定输入数据的一致性,并使用先前获得的知识对不一致像素的值进行输入,从而产生一种新的增量,加权和鲁棒的子空间学习方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fusion of static and dynamic body biometrics for gait recognition Selection of scale-invariant parts for object class recognition Information theoretic focal length selection for real-time active 3D object tracking A multi-scale generative model for animate shapes and parts Integrated edge and junction detection with the boundary tensor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1