Dynamic MRI Reconstruction Exploiting Partial Separability and t-SVD

Shuli Ma, Huiqian Du, Qiongzhi Wu, Wenbo Mei
{"title":"Dynamic MRI Reconstruction Exploiting Partial Separability and t-SVD","authors":"Shuli Ma, Huiqian Du, Qiongzhi Wu, Wenbo Mei","doi":"10.1109/ICBCB.2019.8854641","DOIUrl":null,"url":null,"abstract":"In this paper, we proposed a new method to reconstruct dynamic magnetic imaging (dMRI) data from highly undersampled k-t space measurements. First, we use the partial separability (PS) model to capture the spatiotemporal correlations of dMRI data. Then, we introduce a new tensor decomposition method named as tensor singular value decomposition (t-SVD) to the reconstruction problem. PS and low tensor multi-rank constrains are jointly enforced to reconstruct dynamic MRI data. We develop an efficient algorithm based on the alternating direction method of multipliers (ADMM) to solve the proposed optimization problem. The experimental results demonstrate the superior performance of the proposed method.","PeriodicalId":136995,"journal":{"name":"2019 IEEE 7th International Conference on Bioinformatics and Computational Biology ( ICBCB)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 7th International Conference on Bioinformatics and Computational Biology ( ICBCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBCB.2019.8854641","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In this paper, we proposed a new method to reconstruct dynamic magnetic imaging (dMRI) data from highly undersampled k-t space measurements. First, we use the partial separability (PS) model to capture the spatiotemporal correlations of dMRI data. Then, we introduce a new tensor decomposition method named as tensor singular value decomposition (t-SVD) to the reconstruction problem. PS and low tensor multi-rank constrains are jointly enforced to reconstruct dynamic MRI data. We develop an efficient algorithm based on the alternating direction method of multipliers (ADMM) to solve the proposed optimization problem. The experimental results demonstrate the superior performance of the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用部分可分离性和t-SVD的动态MRI重建
在本文中,我们提出了一种从高度欠采样k-t空间测量中重建动态磁成像(dMRI)数据的新方法。首先,我们使用部分可分性(PS)模型来捕获dMRI数据的时空相关性。然后,我们引入了一种新的张量分解方法——张量奇异值分解(t-SVD)来解决重建问题。将PS约束和低张量多秩约束联合应用于动态MRI数据重构。我们开发了一种基于乘法器交替方向法(ADMM)的高效算法来解决所提出的优化问题。实验结果证明了该方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Clu-RNN: A New RNN Based Approach to Diabetic Blood Glucose Prediction Stability of MRI Radiomic Features of the Hippocampus: An Integrated Analysis of Test-Retest Variability Research on Localization of sEMG Detection Sites Across Individual Upper Limbs Prediction Model of Chilling Injury Combined with Quadratic-Orthogonal-Rotation-Combination Design Technique for Postharvest Cucumber Fruit during Cold Storage A Real-Time Algorithm for Sleep Apnea and Hypopnea Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1