{"title":"The Hypergeometric Distribution as a More Accurate Model for Stochastic Computing","authors":"T. Baker, J. Hayes","doi":"10.23919/DATE48585.2020.9116492","DOIUrl":null,"url":null,"abstract":"A fundamental assumption in stochastic computing (SC) is that bit-streams are generally well-approximated by a Bernoulli process, i.e., a sequence of independent 0-1 choices. We show that this assumption is flawed in unexpected and significant ways for some bit-streams such as those produced by a typical LFSR-based stochastic number generator (SNG). In particular, the Bernoulli assumption leads to a surprising overestimation of output errors and how they vary with input changes. We then propose a more accurate model for such bit-streams based on the hypergeometric distribution and examine its implications for several SC applications. First, we explore the effect of correlation on a mux-based stochastic adder and show that, contrary to what was previously thought, it is not entirely correlation insensitive. Further, inspired by the hypergeometric model, we introduce a new mux tree adder that offers major area savings and accuracy improvement. The effectiveness of this study is validated on a large image processing circuit which achieves an accuracy improvement of 32%, combined with a reduction in overall circuit area.","PeriodicalId":289525,"journal":{"name":"2020 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/DATE48585.2020.9116492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
A fundamental assumption in stochastic computing (SC) is that bit-streams are generally well-approximated by a Bernoulli process, i.e., a sequence of independent 0-1 choices. We show that this assumption is flawed in unexpected and significant ways for some bit-streams such as those produced by a typical LFSR-based stochastic number generator (SNG). In particular, the Bernoulli assumption leads to a surprising overestimation of output errors and how they vary with input changes. We then propose a more accurate model for such bit-streams based on the hypergeometric distribution and examine its implications for several SC applications. First, we explore the effect of correlation on a mux-based stochastic adder and show that, contrary to what was previously thought, it is not entirely correlation insensitive. Further, inspired by the hypergeometric model, we introduce a new mux tree adder that offers major area savings and accuracy improvement. The effectiveness of this study is validated on a large image processing circuit which achieves an accuracy improvement of 32%, combined with a reduction in overall circuit area.