{"title":"Higher order continuum wave equation calibrated on lattice dynamics","authors":"Z. Xu, C. Picu, J. Fish","doi":"10.1142/S1465876304002563","DOIUrl":null,"url":null,"abstract":"The classical approach to linking lattice dynamics properties to continuum equations of motion, the \"method of long waves,\" is extended to include higher order terms. The additional terms account for non-local and non-linear effects. In the first part of the article, the derivation is made within the harmonic approximation for the perfect lattice response. Higher order terms are included in the continuum equation of motion to account for non-linear dispersion effects. Wave propagation coefficients as well as fourth order dispersion coefficients are obtained. In the second part, the lattice anharmonicity is considered and nonlinear macroscopic equations of motion are obtained within the local approximation. Both continuum solutions are particularized to the one-dimensional case and are compared with the lattice response in order to establish the accuracy of the approximation.","PeriodicalId":331001,"journal":{"name":"Int. J. Comput. Eng. Sci.","volume":"496 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Eng. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S1465876304002563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
The classical approach to linking lattice dynamics properties to continuum equations of motion, the "method of long waves," is extended to include higher order terms. The additional terms account for non-local and non-linear effects. In the first part of the article, the derivation is made within the harmonic approximation for the perfect lattice response. Higher order terms are included in the continuum equation of motion to account for non-linear dispersion effects. Wave propagation coefficients as well as fourth order dispersion coefficients are obtained. In the second part, the lattice anharmonicity is considered and nonlinear macroscopic equations of motion are obtained within the local approximation. Both continuum solutions are particularized to the one-dimensional case and are compared with the lattice response in order to establish the accuracy of the approximation.