Phony News Detection in Reddit Using Natural Language Techniques and Machine Learning Pipelines

Srinivas Jagirdar, Venkata Subba K. Reddy
{"title":"Phony News Detection in Reddit Using Natural Language Techniques and Machine Learning Pipelines","authors":"Srinivas Jagirdar, Venkata Subba K. Reddy","doi":"10.4018/ijncr.2021070101","DOIUrl":null,"url":null,"abstract":"Phony news or fake news spreads like a wildfire on social media causing loss to the society. Swift detection of fake news is a priority as it reduces harm to society. This paper developed a phony news detector for Reddit posts using popular machine learning techniques in conjunction with natural language processing techniques. Popular feature extraction algorithms like CountVectorizer (CV) and Term Frequency Inverse Document Frequency (TFIDF) were implemented. These features were fed to Multinomial Naive Bayes (MNB), Random Forest (RF), Support Vector Classifier (SVC), Logistic Regression (LR), AdaBoost, and XGBoost for classifying news as either genuine or phony. Finally, coefficient analysis was performed in order to interpret the best coefficients. The study revealed that the pipeline model of MNB and TFIDF achieved a best accuracy rate of 79.05% when compared to other pipeline models.","PeriodicalId":369881,"journal":{"name":"Int. J. Nat. Comput. Res.","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Nat. Comput. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijncr.2021070101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Phony news or fake news spreads like a wildfire on social media causing loss to the society. Swift detection of fake news is a priority as it reduces harm to society. This paper developed a phony news detector for Reddit posts using popular machine learning techniques in conjunction with natural language processing techniques. Popular feature extraction algorithms like CountVectorizer (CV) and Term Frequency Inverse Document Frequency (TFIDF) were implemented. These features were fed to Multinomial Naive Bayes (MNB), Random Forest (RF), Support Vector Classifier (SVC), Logistic Regression (LR), AdaBoost, and XGBoost for classifying news as either genuine or phony. Finally, coefficient analysis was performed in order to interpret the best coefficients. The study revealed that the pipeline model of MNB and TFIDF achieved a best accuracy rate of 79.05% when compared to other pipeline models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用自然语言技术和机器学习管道的Reddit虚假新闻检测
虚假新闻或假新闻在社交媒体上像野火一样蔓延,给社会造成损失。迅速发现假新闻是一个优先事项,因为它可以减少对社会的伤害。本文使用流行的机器学习技术与自然语言处理技术相结合,为Reddit帖子开发了一个虚假新闻检测器。实现了常用的特征提取算法,如CountVectorizer (CV)和Term Frequency Inverse Document Frequency (TFIDF)。这些特征被输入到多项式朴素贝叶斯(MNB)、随机森林(RF)、支持向量分类器(SVC)、逻辑回归(LR)、AdaBoost和XGBoost中,用于将新闻分类为真假。最后进行系数分析,以解释最佳系数。研究表明,与其他管道模型相比,MNB和TFIDF的管道模型准确率最高,为79.05%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Insights Into Incorporating Trustworthiness and Ethics in AI Systems With Explainable AI Concept Drift Adaptation in Intrusion Detection Systems Using Ensemble Learning Natural Computing of Human Facial Emotion Using Multi-Learning Fuzzy Approach Detection of Small Oranges Using YOLO v3 Feature Pyramid Mechanism Performance Parameter Evaluation of 7nm FinFET by Tuning Metal Work Function and High K Dielectrics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1