Learning to Solve Geometry Problems from Natural Language Demonstrations in Textbooks

Mrinmaya Sachan, E. Xing
{"title":"Learning to Solve Geometry Problems from Natural Language Demonstrations in Textbooks","authors":"Mrinmaya Sachan, E. Xing","doi":"10.18653/v1/S17-1029","DOIUrl":null,"url":null,"abstract":"Humans as well as animals are good at imitation. Inspired by this, the learning by demonstration view of machine learning learns to perform a task from detailed example demonstrations. In this paper, we introduce the task of question answering using natural language demonstrations where the question answering system is provided with detailed demonstrative solutions to questions in natural language. As a case study, we explore the task of learning to solve geometry problems using demonstrative solutions available in textbooks. We collect a new dataset of demonstrative geometry solutions from textbooks and explore approaches that learn to interpret these demonstrations as well as to use these interpretations to solve geometry problems. Our approaches show improvements over the best previously published system for solving geometry problems.","PeriodicalId":344435,"journal":{"name":"Joint Conference on Lexical and Computational Semantics","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joint Conference on Lexical and Computational Semantics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/S17-1029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

Humans as well as animals are good at imitation. Inspired by this, the learning by demonstration view of machine learning learns to perform a task from detailed example demonstrations. In this paper, we introduce the task of question answering using natural language demonstrations where the question answering system is provided with detailed demonstrative solutions to questions in natural language. As a case study, we explore the task of learning to solve geometry problems using demonstrative solutions available in textbooks. We collect a new dataset of demonstrative geometry solutions from textbooks and explore approaches that learn to interpret these demonstrations as well as to use these interpretations to solve geometry problems. Our approaches show improvements over the best previously published system for solving geometry problems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从教科书的自然语言演示中学习解决几何问题
人和动物一样,都善于模仿。受此启发,机器学习的演示学习视图从详细的示例演示中学习执行任务。在本文中,我们引入了使用自然语言演示的问答任务,并为问答系统提供了详细的自然语言问题演示解决方案。作为一个案例研究,我们探讨了使用教科书中提供的示范解决方案来解决几何问题的学习任务。我们从教科书中收集了一个新的演示几何解的数据集,并探索学习解释这些演示以及使用这些解释来解决几何问题的方法。我们的方法比以前发表的解决几何问题的最佳系统有所改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Embedded Semantic Lexicon Induction with Joint Global and Local Optimization Semantic Frames and Visual Scenes: Learning Semantic Role Inventories from Image and Video Descriptions Comparing Approaches for Automatic Question Identification Detecting Asymmetric Semantic Relations in Context: A Case-Study on Hypernymy Detection Deep Learning Models For Multiword Expression Identification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1