Designing customized microprocessors for fixed-point computation

S. Vakili, J. Langlois, G. Bois
{"title":"Designing customized microprocessors for fixed-point computation","authors":"S. Vakili, J. Langlois, G. Bois","doi":"10.1109/AHS.2015.7231168","DOIUrl":null,"url":null,"abstract":"This paper proposes a method to optimize application-specific microprocessors for fixed-point computations. Fixed-point word-length optimization is a well-known research area that aims to find the optimal trade-offs between accuracy and hardware cost in bitwidth allocation signals in fixed point circuits. This work proposes a methodology to combine word-length optimization with application-specific processor customization. The goal is to optimize the following parameters in the processor architecture: (1) datatype word-lengths, (2) size of register-files and (3) architecture of the functional units. Multi-level evolutionary algorithms are employed to perform the optimization. To facilitate evaluation, a new processor design environment was developed that supports necessary customization flexibility to realize and evaluate the proposed methodology. The experimental results show that for five evaluated benchmarks, the proposed methodology can reduce the number of consumed LUTs and flip-flops by an average of 11.9% and 5.1%, respectively, while reducing the latency by an average of 33.4%.","PeriodicalId":101545,"journal":{"name":"NASA/ESA Conference on Adaptive Hardware and Systems","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NASA/ESA Conference on Adaptive Hardware and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AHS.2015.7231168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper proposes a method to optimize application-specific microprocessors for fixed-point computations. Fixed-point word-length optimization is a well-known research area that aims to find the optimal trade-offs between accuracy and hardware cost in bitwidth allocation signals in fixed point circuits. This work proposes a methodology to combine word-length optimization with application-specific processor customization. The goal is to optimize the following parameters in the processor architecture: (1) datatype word-lengths, (2) size of register-files and (3) architecture of the functional units. Multi-level evolutionary algorithms are employed to perform the optimization. To facilitate evaluation, a new processor design environment was developed that supports necessary customization flexibility to realize and evaluate the proposed methodology. The experimental results show that for five evaluated benchmarks, the proposed methodology can reduce the number of consumed LUTs and flip-flops by an average of 11.9% and 5.1%, respectively, while reducing the latency by an average of 33.4%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
为定点计算设计定制的微处理器
本文提出了一种优化定点计算专用微处理器的方法。定点字长优化是一个众所周知的研究领域,其目的是在定点电路的位宽分配信号中找到精度和硬件成本之间的最佳平衡点。这项工作提出了一种将字长优化与特定应用程序的处理器定制相结合的方法。目标是优化处理器体系结构中的以下参数:(1)数据类型字长,(2)寄存器文件的大小,(3)功能单元的体系结构。采用多级进化算法进行优化。为了便于评估,开发了一个新的处理器设计环境,该环境支持必要的自定义灵活性来实现和评估所提出的方法。实验结果表明,在所评估的5个基准测试中,所提出的方法可以将所消耗的lut和触发器的数量分别平均减少11.9%和5.1%,同时将延迟平均减少33.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Keynote address IV: The role of infinite dimensional direct adaptive control in autonomous systems and quantum information system Invited talk I: The foundations of robustness in reconfigurability in a radiation environment: Understanding single-event effects test results on SRAM-based FPGAs Keynote address II: Human space flight - From Mars to the stars Keynote address V: Some ambitious NASA mission concepts Keynote address III: Recovery of function in major spinal cord injury using learning-guided spinal stimulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1