Learning the Classification of Traffic Accident Types

Tibebe Beshah, D. Ejigu, P. Krömer, V. Snás̃el, J. Platoš, A. Abraham
{"title":"Learning the Classification of Traffic Accident Types","authors":"Tibebe Beshah, D. Ejigu, P. Krömer, V. Snás̃el, J. Platoš, A. Abraham","doi":"10.1109/INCOS.2012.75","DOIUrl":null,"url":null,"abstract":"This paper presents an application of evolutionary fuzzy classifier design to a road accident data analysis. A fuzzy classifier evolved by the genetic programming was used to learn the labeling of data in a real world road accident data set. The symbolic classifier was inspected in order to select important features and the relations among them. Selected features provide a feedback for traffic management authorities that can exploit the knowledge to improve road safety and mitigate the severity of traffic accidents.","PeriodicalId":287478,"journal":{"name":"2012 Fourth International Conference on Intelligent Networking and Collaborative Systems","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Fourth International Conference on Intelligent Networking and Collaborative Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INCOS.2012.75","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

This paper presents an application of evolutionary fuzzy classifier design to a road accident data analysis. A fuzzy classifier evolved by the genetic programming was used to learn the labeling of data in a real world road accident data set. The symbolic classifier was inspected in order to select important features and the relations among them. Selected features provide a feedback for traffic management authorities that can exploit the knowledge to improve road safety and mitigate the severity of traffic accidents.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
学习交通事故类型的分类
提出了一种基于进化模糊分类器的道路交通事故数据分析方法。利用遗传规划进化出的模糊分类器,对实际道路交通事故数据集进行标注学习。对符号分类器进行了检验,以选择重要特征及其之间的关系。选定的功能可以为交通管理部门提供反馈,从而可以利用这些知识来改善道路安全和减轻交通事故的严重程度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Comparative Evaluation of Private Information Retrieval Techniques in Location-Based Services SOSCast: Location Estimation of Immobilized Persons through SOS Message Propagation Unsupervised Human Action Categorization Using Latent Dirichlet Markov Clustering A P2P Traffic Localization Method with Additional Delay Insertion Evaluation for Acquiring Method for Agents' Actions with Ant Colony Optimization in Robo Cup Rescue Simulation System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1