Supervised learning with artificial selection

M. Hagiwara, M. Nakagawa
{"title":"Supervised learning with artificial selection","authors":"M. Hagiwara, M. Nakagawa","doi":"10.1109/IJCNN.1989.118443","DOIUrl":null,"url":null,"abstract":"Summary form only given, as follows. Supervised learning with artificial selection is proposed as a way to escape from local minima. The concept of artificial selection is reasonable for nature. In the authors' method, the 'worst' hidden unit is detected, and then all the weights connected to the detected hidden unit are reset to small random values. According to simulations, only half the trials using conventional backpropagation converge, whereas all of the trials using the proposed method converge, and quickly do so.<<ETX>>","PeriodicalId":199877,"journal":{"name":"International 1989 Joint Conference on Neural Networks","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International 1989 Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1989.118443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Summary form only given, as follows. Supervised learning with artificial selection is proposed as a way to escape from local minima. The concept of artificial selection is reasonable for nature. In the authors' method, the 'worst' hidden unit is detected, and then all the weights connected to the detected hidden unit are reset to small random values. According to simulations, only half the trials using conventional backpropagation converge, whereas all of the trials using the proposed method converge, and quickly do so.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工选择的监督学习
仅给出摘要形式,如下。提出了一种利用人工选择进行监督学习的方法来避免局部最小值问题。人工选择的概念对自然界来说是合理的。在作者的方法中,检测“最差”隐藏单元,然后将与检测到的隐藏单元相连的所有权重重置为小的随机值。根据模拟,使用传统反向传播方法的试验中只有一半收敛,而使用该方法的所有试验都收敛,而且速度很快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hybrid distributed/local connectionist architectures A new back-propagation algorithm with coupled neuron A novel objective function for improved phoneme recognition using time delay neural networks Optimization of a digital neuron design Multitarget tracking with an optical neural net using a quadratic energy function
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1