Quantum Data Reduction with Application to Video Classification

Kostas Blekos, D. Kosmopoulos
{"title":"Quantum Data Reduction with Application to Video Classification","authors":"Kostas Blekos, D. Kosmopoulos","doi":"10.1109/SEC54971.2022.00065","DOIUrl":null,"url":null,"abstract":"We investigate a quantum data reduction technique with application to video classification. A hybrid quantum-classical step performs data reduction on the video dataset generating “representative” distributions for each video class. These distributions are used by a quantum classification algorithm to firstly reduce the size of the videos and then classify the reduced videos to one of $k$ classes. We verify the method using sign videos and demonstrate that the reduced videos contain enough information to successfully classify them using a quantum classification process. The proposed data reduction method showcases a way to alleviate the “data loading” problem of quantum computers for the problem of video classification. Data loading is a huge bottleneck, as there are no known efficient techniques to perform that task without sacrificing many of the benefits of quantum computing.","PeriodicalId":364062,"journal":{"name":"2022 IEEE/ACM 7th Symposium on Edge Computing (SEC)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM 7th Symposium on Edge Computing (SEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEC54971.2022.00065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate a quantum data reduction technique with application to video classification. A hybrid quantum-classical step performs data reduction on the video dataset generating “representative” distributions for each video class. These distributions are used by a quantum classification algorithm to firstly reduce the size of the videos and then classify the reduced videos to one of $k$ classes. We verify the method using sign videos and demonstrate that the reduced videos contain enough information to successfully classify them using a quantum classification process. The proposed data reduction method showcases a way to alleviate the “data loading” problem of quantum computers for the problem of video classification. Data loading is a huge bottleneck, as there are no known efficient techniques to perform that task without sacrificing many of the benefits of quantum computing.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
量子数据约简及其在视频分类中的应用
研究了一种应用于视频分类的量子数据约简技术。混合量子-经典步骤对视频数据集执行数据约简,为每个视频类生成“代表性”分布。量子分类算法使用这些分布首先减小视频的大小,然后将减小的视频分类为$k$类之一。我们使用符号视频验证了该方法,并证明了简化后的视频包含足够的信息,可以使用量子分类过程成功地对它们进行分类。提出的数据约简方法展示了一种缓解量子计算机在视频分类问题上的“数据加载”问题的方法。数据加载是一个巨大的瓶颈,因为没有已知的有效技术可以在不牺牲量子计算的许多好处的情况下执行该任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Opportunities for Optimizing the Container Runtime Poster: EdgeShell - A language for composing edge applications Quantum Text Encoding for Classification Tasks Scaling Vehicle Routing Problem Solvers with QUBO-based Specialized Hardware FLiCR: A Fast and Lightweight LiDAR Point Cloud Compression Based on Lossy RI
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1