RSFNet: a method for remote sensing image semantic segmentation based on fully convolutional neural networks

Chuanhao Wei, Dezhao Kong, Xuelian Sun, Yu Zhou
{"title":"RSFNet: a method for remote sensing image semantic segmentation based on fully convolutional neural networks","authors":"Chuanhao Wei, Dezhao Kong, Xuelian Sun, Yu Zhou","doi":"10.1117/12.3000799","DOIUrl":null,"url":null,"abstract":"The advancement of remote sensing technology has broadened the application scope of remote sensing image data across various fields. Traditional methods, when processing remote sensing images, face limitations in efficiency and generalization capabilities due to their intricate geographical features. In contrast, deep learning segmentation methods exhibit superior performance but struggle with contextual detail loss and multi-scale features. In this paper, we introduce the RSFNet model to tackle these issues. The model employs spatial paths to extract detailed information from low-level features, presents a residual ASPP incorporating an attention mechanism, and utilizes a feature map slicing module to capture small target features. Experimental results show that RSFNet attains 88.38% pixel accuracy (PA) and 81.06% mean intersection over union (mIoU) on the Potsdam dataset, proving its suitability for semantic segmentation of remote sensing images.","PeriodicalId":210802,"journal":{"name":"International Conference on Image Processing and Intelligent Control","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Image Processing and Intelligent Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3000799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The advancement of remote sensing technology has broadened the application scope of remote sensing image data across various fields. Traditional methods, when processing remote sensing images, face limitations in efficiency and generalization capabilities due to their intricate geographical features. In contrast, deep learning segmentation methods exhibit superior performance but struggle with contextual detail loss and multi-scale features. In this paper, we introduce the RSFNet model to tackle these issues. The model employs spatial paths to extract detailed information from low-level features, presents a residual ASPP incorporating an attention mechanism, and utilizes a feature map slicing module to capture small target features. Experimental results show that RSFNet attains 88.38% pixel accuracy (PA) and 81.06% mean intersection over union (mIoU) on the Potsdam dataset, proving its suitability for semantic segmentation of remote sensing images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RSFNet:一种基于全卷积神经网络的遥感图像语义分割方法
遥感技术的进步,拓宽了遥感影像数据在各个领域的应用范围。传统方法在处理遥感图像时,由于其复杂的地理特征,在效率和泛化能力上受到限制。相比之下,深度学习分割方法表现出优越的性能,但在上下文细节丢失和多尺度特征方面存在困难。在本文中,我们引入RSFNet模型来解决这些问题。该模型利用空间路径从底层特征中提取细节信息,提出了一种包含注意机制的残差ASPP,并利用特征映射切片模块捕获小目标特征。实验结果表明,RSFNet在波茨坦数据集上获得了88.38%的像素精度(PA)和81.06%的平均交联(mIoU),证明了其对遥感图像语义分割的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluation of design factors of an interactive interface of intangible cultural heritage APP based on user experience Video description method with fusion of instance-aware temporal features A control system for fine farming of apple trees Chinese image description evaluation method based on target domain semantic constraints YOLO-H: a lightweight object detection framework for helmet wearing detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1