High-Dynamic-Range Lighting Estimation From Face Portraits

Alejandro Sztrajman, A. Neophytou, T. Weyrich, Eric Sommerlade
{"title":"High-Dynamic-Range Lighting Estimation From Face Portraits","authors":"Alejandro Sztrajman, A. Neophytou, T. Weyrich, Eric Sommerlade","doi":"10.1109/3DV50981.2020.00045","DOIUrl":null,"url":null,"abstract":"We present a CNN-based method for outdoor highdynamic-range (HDR) environment map prediction from low-dynamic-range (LDR) portrait images. Our method relies on two different CNN architectures, one for light encoding and another for face-to-light prediction. Outdoor lighting is characterised by an extremely high dynamic range, and thus our encoding splits the environment map data between low and high-intensity components, and encodes them using tailored representations. The combination of both network architectures constitutes an end-to-end method for accurate HDR light prediction from faces at real-time rates, inaccessible for previous methods which focused on low dynamic range lighting or relied on non-linear optimisation schemes. We train our networks using both real and synthetic images, we compare our light encoding with other methods for light representation, and we analyse our results for light prediction on real images. We show that our predicted HDR environment maps can be used as accurate illumination sources for scene renderings, with potential applications in 3D object insertion for augmented reality.","PeriodicalId":293399,"journal":{"name":"2020 International Conference on 3D Vision (3DV)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on 3D Vision (3DV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DV50981.2020.00045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We present a CNN-based method for outdoor highdynamic-range (HDR) environment map prediction from low-dynamic-range (LDR) portrait images. Our method relies on two different CNN architectures, one for light encoding and another for face-to-light prediction. Outdoor lighting is characterised by an extremely high dynamic range, and thus our encoding splits the environment map data between low and high-intensity components, and encodes them using tailored representations. The combination of both network architectures constitutes an end-to-end method for accurate HDR light prediction from faces at real-time rates, inaccessible for previous methods which focused on low dynamic range lighting or relied on non-linear optimisation schemes. We train our networks using both real and synthetic images, we compare our light encoding with other methods for light representation, and we analyse our results for light prediction on real images. We show that our predicted HDR environment maps can be used as accurate illumination sources for scene renderings, with potential applications in 3D object insertion for augmented reality.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人脸肖像的高动态范围照明估计
本文提出了一种基于cnn的基于低动态范围(LDR)人像图像的户外高动态范围(HDR)环境地图预测方法。我们的方法依赖于两种不同的CNN架构,一种用于光编码,另一种用于对光预测。户外照明的特点是具有极高的动态范围,因此我们的编码将环境地图数据划分为低强度和高强度组件,并使用定制的表示对它们进行编码。这两种网络架构的结合构成了一种端到端的方法,可以实时准确地从面部进行HDR光预测,这是以前专注于低动态范围照明或依赖非线性优化方案的方法无法实现的。我们使用真实图像和合成图像训练我们的网络,将我们的光编码与其他光表示方法进行比较,并分析我们的结果用于真实图像的光预测。我们表明,我们预测的HDR环境地图可以用作场景渲染的精确照明源,在增强现实的3D对象插入中具有潜在的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Screen-space Regularization on Differentiable Rasterization Motion Annotation Programs: A Scalable Approach to Annotating Kinematic Articulations in Large 3D Shape Collections Two-Stage Relation Constraint for Semantic Segmentation of Point Clouds Time Shifted IMU Preintegration for Temporal Calibration in Incremental Visual-Inertial Initialization KeystoneDepth: History in 3D
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1