Quantitative Analysis of Efficient Antispam Techniques

Anders Wiehe, Erik Hjelmås, S. Wolthusen
{"title":"Quantitative Analysis of Efficient Antispam Techniques","authors":"Anders Wiehe, Erik Hjelmås, S. Wolthusen","doi":"10.1109/IAW.2006.1652091","DOIUrl":null,"url":null,"abstract":"While dynamic content-based filtering mechanisms for the identification of unsolicited commercial email (UCE, or more commonly \"spam\") have proven to be effective, these techniques require considerable computational resources. It is therefore highly desirable to reduce the number of emails that must be subjected to a content-based analysis. In this paper, a number of efficient techniques based on lower protocol level properties are analyzed using a large real-world data set. We show that combinations of several network-based filters can provide a computationally efficient pre-filtering mechanism at acceptable false-positive rates","PeriodicalId":326306,"journal":{"name":"2006 IEEE Information Assurance Workshop","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Information Assurance Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAW.2006.1652091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

While dynamic content-based filtering mechanisms for the identification of unsolicited commercial email (UCE, or more commonly "spam") have proven to be effective, these techniques require considerable computational resources. It is therefore highly desirable to reduce the number of emails that must be subjected to a content-based analysis. In this paper, a number of efficient techniques based on lower protocol level properties are analyzed using a large real-world data set. We show that combinations of several network-based filters can provide a computationally efficient pre-filtering mechanism at acceptable false-positive rates
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高效反垃圾邮件技术的定量分析
虽然用于识别未经请求的商业电子邮件(UCE,或更常见的“垃圾邮件”)的基于内容的动态过滤机制已被证明是有效的,但这些技术需要大量的计算资源。因此,减少必须进行基于内容的分析的电子邮件数量是非常可取的。在本文中,分析了基于较低协议级别属性的一些有效技术,并使用了大量的真实数据集。我们证明了几个基于网络的滤波器的组合可以在可接受的假阳性率下提供计算效率高的预滤波机制
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Developing a Threat Model for Enterprise Storage Area Networks Automatically Building an Information-Security Vulnerability Database Analyzing Attack Trees using Generalized Stochastic Petri Nets Secure State Processing Visual Reverse Turing Tests: A False Sense of Security
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1