{"title":"Autonomous WiFi Fingerprinting for Indoor Localization","authors":"Shilong Dai, Liang He, Xuebo Zhang","doi":"10.1109/ICCPS48487.2020.00021","DOIUrl":null,"url":null,"abstract":"WiFi-based indoor localization has received extensive attentions from both academia and industry. However, the overhead of constructing and maintaining the WiFi fingerprint map remains a bottleneck for the wide-deployment of WiFi- based indoor localization systems. Recently, robots are adopted as the professional surveyor to fingerprint the environment autonomously. But the time and energy cost still limit the coverage of the robot surveyor, thus reduce its scalability.To fill this need, we design an Autonomous WiFi Fingerprinting system, called AuF, which autonomously constructs the fingerprint database with improved time and energy efficiency. AuF first conduct an automatic initialization process in the target indoor environment, then constructs the WiFi fingerprint database in two steps: (i) surveying the site without sojourn, (ii) recovering unreliable signals in the database with two methods. We have implemented and evaluated AuF using a Pioneer 3-DX robot, on two sites of our 70 × 90m2 Department building with different structures and deployments of access points (APs). The results show AuF finishes the fingerprint database construction in 43/51 minutes, and consumes 60/82 Wh on the two floors respectively, which is a 64%/71% and 61%/64% reduction when compared to traditional site survey methods, without degrading the localization accuracy.","PeriodicalId":158690,"journal":{"name":"2020 ACM/IEEE 11th International Conference on Cyber-Physical Systems (ICCPS)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 ACM/IEEE 11th International Conference on Cyber-Physical Systems (ICCPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCPS48487.2020.00021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
WiFi-based indoor localization has received extensive attentions from both academia and industry. However, the overhead of constructing and maintaining the WiFi fingerprint map remains a bottleneck for the wide-deployment of WiFi- based indoor localization systems. Recently, robots are adopted as the professional surveyor to fingerprint the environment autonomously. But the time and energy cost still limit the coverage of the robot surveyor, thus reduce its scalability.To fill this need, we design an Autonomous WiFi Fingerprinting system, called AuF, which autonomously constructs the fingerprint database with improved time and energy efficiency. AuF first conduct an automatic initialization process in the target indoor environment, then constructs the WiFi fingerprint database in two steps: (i) surveying the site without sojourn, (ii) recovering unreliable signals in the database with two methods. We have implemented and evaluated AuF using a Pioneer 3-DX robot, on two sites of our 70 × 90m2 Department building with different structures and deployments of access points (APs). The results show AuF finishes the fingerprint database construction in 43/51 minutes, and consumes 60/82 Wh on the two floors respectively, which is a 64%/71% and 61%/64% reduction when compared to traditional site survey methods, without degrading the localization accuracy.