Modelling data from inside the Earth: local smoothing of mean and dispersion structure in deep drill data

G. Kauermann, H. Küchenhoff
{"title":"Modelling data from inside the Earth: local smoothing of mean and dispersion structure in deep drill data","authors":"G. Kauermann, H. Küchenhoff","doi":"10.1191/1471082X03st048oa","DOIUrl":null,"url":null,"abstract":"The paper describes the analysis of data originating from the German Deep Drill Program. The amount of ‘cataclastic rocks’ is modelled with data resulting from a series of measurements taken from deep drill samples ranging from 1000 up to 5000 m depth. The measurements thereby describe the amount of strongly deformed rock particles and serve as indicator for the occurrence of cataclastic shear zones, which are areas of severely‘ground’ stones due to movements of different layers in the earth crust. The data represent a ‘depth series’ as analogue to a ‘time series’, with mean, dispersion and correlation structure varying in depth. The general smooth structure is thereby disturbed by peaks and outliers so that robust procedures have to be applied for estimation. In terms of statistical modelling technology three different peculiarities of the data have to be tackled simultaneously, that is estimation of the correlation structure, local bandwidth selection and robust smoothing. To do so, existing routines are adapted and combined in new ‘two-stage’ estimation procedures.","PeriodicalId":354759,"journal":{"name":"Statistical Modeling","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1191/1471082X03st048oa","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The paper describes the analysis of data originating from the German Deep Drill Program. The amount of ‘cataclastic rocks’ is modelled with data resulting from a series of measurements taken from deep drill samples ranging from 1000 up to 5000 m depth. The measurements thereby describe the amount of strongly deformed rock particles and serve as indicator for the occurrence of cataclastic shear zones, which are areas of severely‘ground’ stones due to movements of different layers in the earth crust. The data represent a ‘depth series’ as analogue to a ‘time series’, with mean, dispersion and correlation structure varying in depth. The general smooth structure is thereby disturbed by peaks and outliers so that robust procedures have to be applied for estimation. In terms of statistical modelling technology three different peculiarities of the data have to be tackled simultaneously, that is estimation of the correlation structure, local bandwidth selection and robust smoothing. To do so, existing routines are adapted and combined in new ‘two-stage’ estimation procedures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
地球内部的建模数据:深钻数据中均值和频散结构的局部平滑
本文介绍了对德国深钻计划数据的分析。“碎裂岩”的数量是根据从1000到5000米深度的深钻样品中获得的一系列测量数据进行建模的。因此,测量结果描述了强烈变形的岩石颗粒的数量,并作为碎裂剪切带发生的指标,碎裂剪切带是由于地壳中不同层的运动而严重“磨碎”岩石的区域。数据将“深度序列”表示为类似于“时间序列”的“深度序列”,其平均值、离散度和相关结构随深度而变化。因此,一般的平滑结构受到峰值和异常值的干扰,因此必须采用鲁棒程序进行估计。在统计建模技术方面,必须同时解决数据的三个不同特性,即相关结构的估计、局部带宽的选择和鲁棒平滑。为了做到这一点,现有的例程被改编并结合到新的“两阶段”估计过程中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Use of auxiliary data in semi-parametric spatial regression with nonignorable missing responses Bayesian modeling for genetic association in case-control studies: accounting for unknown population substructure GLMM approach to study the spatial and temporal evolution of spikes in the small intestine Comparing nonparametric surfaces Analyzing the emergence times of permanent teeth: an example of modeling the covariance matrix with interval-censored data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1