A compositional theory for STM Haskell

J. Borgström, K. Bhargavan, A. Gordon
{"title":"A compositional theory for STM Haskell","authors":"J. Borgström, K. Bhargavan, A. Gordon","doi":"10.1145/1596638.1596648","DOIUrl":null,"url":null,"abstract":"We address the problem of reasoning about Haskell programs that use Software Transactional Memory (STM). As a motivating example, we consider Haskell code for a concurrent non-deterministic tree rewriting algorithm implementing the operational semantics of the ambient calculus. The core of our theory is a uniform model, in the spirit of process calculi, of the run-time state of multi-threaded STM Haskell programs. The model was designed to simplify both local and compositional reasoning about STM programs. A single reduction relation captures both pure functional computations and also effectful computations in the STM and I/O monads. We state and prove liveness, soundness, completeness, safety, and termination properties relating source processes and their Haskell implementation. Our proof exploits various ideas from concurrency theory, such as the bisimulation technique, but in the setting of a widely used programming language rather than an abstract process calculus. Additionally, we develop an equational theory for reasoning about STM Haskell programs, and establish for the first time equations conjectured by the designers of STM Haskell. We conclude that using a pure functional language extended with STM facilitates reasoning about concurrent implementation code.","PeriodicalId":188691,"journal":{"name":"ACM SIGPLAN Symposium/Workshop on Haskell","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGPLAN Symposium/Workshop on Haskell","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1596638.1596648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We address the problem of reasoning about Haskell programs that use Software Transactional Memory (STM). As a motivating example, we consider Haskell code for a concurrent non-deterministic tree rewriting algorithm implementing the operational semantics of the ambient calculus. The core of our theory is a uniform model, in the spirit of process calculi, of the run-time state of multi-threaded STM Haskell programs. The model was designed to simplify both local and compositional reasoning about STM programs. A single reduction relation captures both pure functional computations and also effectful computations in the STM and I/O monads. We state and prove liveness, soundness, completeness, safety, and termination properties relating source processes and their Haskell implementation. Our proof exploits various ideas from concurrency theory, such as the bisimulation technique, but in the setting of a widely used programming language rather than an abstract process calculus. Additionally, we develop an equational theory for reasoning about STM Haskell programs, and establish for the first time equations conjectured by the designers of STM Haskell. We conclude that using a pure functional language extended with STM facilitates reasoning about concurrent implementation code.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
STM Haskell的组合理论
我们解决了使用软件事务性内存(STM)的Haskell程序的推理问题。作为一个激励的例子,我们考虑了一个并发非确定性树重写算法的Haskell代码,该算法实现了环境演算的操作语义。我们的理论的核心是一个统一的模型,在进程演算的精神,多线程STM Haskell程序的运行时状态。该模型旨在简化STM程序的局部推理和组合推理。一个简化关系既可以捕获纯函数计算,也可以捕获STM和I/O单子中的有效计算。我们陈述并证明了源进程及其Haskell实现的活动性、健全性、完整性、安全性和终止性。我们的证明利用了并发理论中的各种思想,例如双模拟技术,但采用的是广泛使用的编程语言,而不是抽象的过程演算。此外,我们发展了一个用于STM Haskell程序推理的方程理论,并首次建立了STM Haskell设计者推测的方程。我们得出的结论是,使用经过STM扩展的纯函数式语言有助于对并发实现代码进行推理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mio: a high-performance multicore io manager for GHC Understanding idiomatic traversals backwards and forwards An EDSL approach to high performance Haskell programming Causality of optimized Haskell: what is burning our cycles? Splittable pseudorandom number generators using cryptographic hashing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1