Characterization of digital channels using hidden Markov models

J. Brummer
{"title":"Characterization of digital channels using hidden Markov models","authors":"J. Brummer","doi":"10.1109/COMSIG.1992.274287","DOIUrl":null,"url":null,"abstract":"To characterise the error process in binary symmetric channels with memory, the hidden Markov model allows more powerful modelling than the commonly used Fritchman models. Baum-Welch re-estimation is used to infer the model parameters from error sequences measured over the channel. This method is computationally very demanding for long error sequences, which are necessary when low BER channels are modelled. An efficient re-estimation has computational load directly proportional to the number of errors in the sequence rather than to its length. Channel simulation may be speeded-up similarly.<<ETX>>","PeriodicalId":342857,"journal":{"name":"Proceedings of the 1992 South African Symposium on Communications and Signal Processing","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1992 South African Symposium on Communications and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMSIG.1992.274287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

To characterise the error process in binary symmetric channels with memory, the hidden Markov model allows more powerful modelling than the commonly used Fritchman models. Baum-Welch re-estimation is used to infer the model parameters from error sequences measured over the channel. This method is computationally very demanding for long error sequences, which are necessary when low BER channels are modelled. An efficient re-estimation has computational load directly proportional to the number of errors in the sequence rather than to its length. Channel simulation may be speeded-up similarly.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用隐马尔可夫模型表征数字信道
为了描述具有内存的二进制对称信道中的错误过程,隐马尔可夫模型比常用的弗里奇曼模型提供了更强大的建模功能。采用鲍姆-韦尔奇重估计从信道上测量的误差序列中推断模型参数。对于低误码率信道建模时所必需的长错误序列,这种方法的计算要求非常高。有效的重估计的计算负荷与序列中的错误数成正比,而不是与序列的长度成正比。信道模拟也可以类似地加快速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
P/sub epsilon /-derived S/N ratio: a novel ideal error probability performance reference for fading channels A new PCM codec test method with reduced real-time and signal processing requirements Omni-font character recognition using templates and neural networks Some unique properties and applications of perfect squares minimum phase CAZAC sequences Radar target recognition using multiple bounce scattering terms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1