ECG-CCNet: Cardiovascular(Cardiac) and COVID‑19 Disease Classification Using Deep Convolutional Neural Network Learning Pipeline Approaches From Electrocardiography(ECG)- A Study
{"title":"ECG-CCNet: Cardiovascular(Cardiac) and COVID‑19 Disease Classification Using Deep Convolutional Neural Network Learning Pipeline Approaches From Electrocardiography(ECG)- A Study","authors":"Yogesh H. Bhosale, K. Sridhar Patnaik","doi":"10.1109/SILCON55242.2022.10028792","DOIUrl":null,"url":null,"abstract":"Experimental studies demonstrate that COVID-19 illness affects the cardiovascular as well as the pulmonary / lung tract. The limits of existing COVID-19 diagnostic procedures have been revealed. In contrast, to present diagnoses, such as low-sensitivity conventional RT-PCR testing and costly healthcare scanning equipment, implementing additional approaches for COVID-19 illness assessment would be advantageous for COVID-19 epidemic management. Furthermore, problems generated by COVID-19 on the cardiovascular tract must be detected rapidly and precisely using ECG. Considering the numerous advantages of electrocardiogram (ECG) functionalities, the proposed study offers a novel pipeline termed ECG-CCNet for examining the feasibility of employing ECG pulses to diagnose COVID-19. This study is a two-phase transfer learning (TL) approach is suggested for the prognosis of COVID-19 disorder, which includes feature mining utilizing DCNNs models and ensemble pipelining using ECG tracing imageries generated from ECG signals of COVID-19 diseased sufferers relying on the anomalies induced by COVID-19 pathogen on cardiovascular structures. A complete classification performance of 93.5% accuracy, 87% recall, 87.03% F1-score, 95.66% specificity, 87.16% precision, and 95.33% AUC attained by abnormal heartbeats, COVID-19, myocardial, and normal/healthy classification. This experiment is considered a high possibility for speeding up the diagnostic and treatments of COVID-19 individuals, reducing practitioners' efforts, and improving epidemic containment by utilizing ECG data.","PeriodicalId":183947,"journal":{"name":"2022 IEEE Silchar Subsection Conference (SILCON)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Silchar Subsection Conference (SILCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SILCON55242.2022.10028792","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Experimental studies demonstrate that COVID-19 illness affects the cardiovascular as well as the pulmonary / lung tract. The limits of existing COVID-19 diagnostic procedures have been revealed. In contrast, to present diagnoses, such as low-sensitivity conventional RT-PCR testing and costly healthcare scanning equipment, implementing additional approaches for COVID-19 illness assessment would be advantageous for COVID-19 epidemic management. Furthermore, problems generated by COVID-19 on the cardiovascular tract must be detected rapidly and precisely using ECG. Considering the numerous advantages of electrocardiogram (ECG) functionalities, the proposed study offers a novel pipeline termed ECG-CCNet for examining the feasibility of employing ECG pulses to diagnose COVID-19. This study is a two-phase transfer learning (TL) approach is suggested for the prognosis of COVID-19 disorder, which includes feature mining utilizing DCNNs models and ensemble pipelining using ECG tracing imageries generated from ECG signals of COVID-19 diseased sufferers relying on the anomalies induced by COVID-19 pathogen on cardiovascular structures. A complete classification performance of 93.5% accuracy, 87% recall, 87.03% F1-score, 95.66% specificity, 87.16% precision, and 95.33% AUC attained by abnormal heartbeats, COVID-19, myocardial, and normal/healthy classification. This experiment is considered a high possibility for speeding up the diagnostic and treatments of COVID-19 individuals, reducing practitioners' efforts, and improving epidemic containment by utilizing ECG data.