Hardware/Software Co-acceleration of Progressive Learning under Feature Dimension Variation

R. Karn, I. Elfadel
{"title":"Hardware/Software Co-acceleration of Progressive Learning under Feature Dimension Variation","authors":"R. Karn, I. Elfadel","doi":"10.1109/ICECTA57148.2022.9990202","DOIUrl":null,"url":null,"abstract":"In this paper, we address the problem of ASIC HW accelerator re-use in the case when the task-based feature set undergoes size changes. The proposed solution is a hybrid Hardware/Software (HW/SW) co-acceleration methodology for incorporating any additional features into the progressive learning model and performing inference without modifying the architecture of the HW accelerator. The co-acceleration methodology has been prototyped on an edge computing platform and compared with a HW-only acceleration in terms of inference throughput, compute resource utilization, and energy efficiency. The hybrid HW-SW co-accelerator is shown to result in a higher inference throughput while consuming less compute resources and energy than the HW-only solution. The results are further supported by using the HW accelerator’s performance counters to profile overall performance under realistic progressive-learning workloads.","PeriodicalId":337798,"journal":{"name":"2022 International Conference on Electrical and Computing Technologies and Applications (ICECTA)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Electrical and Computing Technologies and Applications (ICECTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECTA57148.2022.9990202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we address the problem of ASIC HW accelerator re-use in the case when the task-based feature set undergoes size changes. The proposed solution is a hybrid Hardware/Software (HW/SW) co-acceleration methodology for incorporating any additional features into the progressive learning model and performing inference without modifying the architecture of the HW accelerator. The co-acceleration methodology has been prototyped on an edge computing platform and compared with a HW-only acceleration in terms of inference throughput, compute resource utilization, and energy efficiency. The hybrid HW-SW co-accelerator is shown to result in a higher inference throughput while consuming less compute resources and energy than the HW-only solution. The results are further supported by using the HW accelerator’s performance counters to profile overall performance under realistic progressive-learning workloads.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
特征维数变化下渐进式学习的软硬件协同加速
在本文中,我们解决了在基于任务的特性集发生大小变化的情况下,ASIC硬件加速器的重用问题。提出的解决方案是一种混合硬件/软件(HW/SW)协同加速方法,用于将任何附加功能合并到渐进式学习模型中,并在不修改HW加速器架构的情况下执行推理。协同加速方法已经在边缘计算平台上进行了原型设计,并在推理吞吐量、计算资源利用率和能源效率方面与仅hw加速进行了比较。混合HW-SW共同加速器显示出更高的推理吞吐量,同时消耗的计算资源和能量比仅hw解决方案更少。通过使用HW加速器的性能计数器来描述实际渐进式学习工作负载下的总体性能,进一步支持了结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Centroid-Based Clustering Using Sentential Embedding Similarity Measure Moss-Based Biotechnological Air Purification Control System Studying the Effect of Face Masks in Identifying Speakers using LSTM Mental Stress Analysis using the Power Spectrum of fNIRS Signals RF LNA with Simultaneous Noise-Cancellation and Distortion-Cancellation for Wireless RF Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1