Personality Classification through Social Media Using Probabilistic Neural Network Algorithms

Mohammad Zoqi Sarwani, Dian Ahkam Sani, Fitria Chabsah Fakhrini
{"title":"Personality Classification through Social Media Using Probabilistic Neural Network Algorithms","authors":"Mohammad Zoqi Sarwani, Dian Ahkam Sani, Fitria Chabsah Fakhrini","doi":"10.25139/ijair.v1i1.2025","DOIUrl":null,"url":null,"abstract":"Today the internet creates a new generation with modern culture that uses digital media. Social media is one of the popular digital media. Facebook is one of the social media that is quite liked by young people. They are accustomed to conveying their thoughts and expression through social media. Text mining analysis can be used to classify one's personality through social media with the probabilistic neural network algorithm. The text can be taken from the status that is on Facebook. In this study, there are three stages, namely text processing, weighting, and probabilistic neural networks for determining classification. Text processing consists of several processes, namely: tokenization, stopword, and steaming. The results of the text processing in the form of text are given a weight value to each word by using the Term Inverse Document Frequent (TF / IDF) method. In the final stage, the Probabilistic Neural Network Algorithm is used to classify personalities. This study uses 25 respondents, with 10 data as training data, and 15 data as testing data. The results of this study reached an accuracy of 60%.","PeriodicalId":365842,"journal":{"name":"International Journal of Artificial Intelligence & Robotics (IJAIR)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Artificial Intelligence & Robotics (IJAIR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25139/ijair.v1i1.2025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Today the internet creates a new generation with modern culture that uses digital media. Social media is one of the popular digital media. Facebook is one of the social media that is quite liked by young people. They are accustomed to conveying their thoughts and expression through social media. Text mining analysis can be used to classify one's personality through social media with the probabilistic neural network algorithm. The text can be taken from the status that is on Facebook. In this study, there are three stages, namely text processing, weighting, and probabilistic neural networks for determining classification. Text processing consists of several processes, namely: tokenization, stopword, and steaming. The results of the text processing in the form of text are given a weight value to each word by using the Term Inverse Document Frequent (TF / IDF) method. In the final stage, the Probabilistic Neural Network Algorithm is used to classify personalities. This study uses 25 respondents, with 10 data as training data, and 15 data as testing data. The results of this study reached an accuracy of 60%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于概率神经网络算法的社交媒体人格分类
今天,互联网创造了使用数字媒体的现代文化的新一代。社交媒体是一种流行的数字媒体。Facebook是年轻人非常喜欢的社交媒体之一。他们习惯于通过社交媒体来传达自己的想法和表达。文本挖掘分析可以利用概率神经网络算法通过社交媒体对一个人的性格进行分类。文本可以取自Facebook上的状态。在本研究中,有三个阶段,即文本处理、加权和概率神经网络来确定分类。文本处理包括几个过程,即:标记化、停词和处理。文本形式的文本处理结果通过术语逆文档频率(TF / IDF)方法赋予每个单词一个权重值。最后,利用概率神经网络算法对人格进行分类。本研究使用25个被调查者,其中10个数据作为训练数据,15个数据作为测试数据。这项研究的结果达到了60%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Emotion Detection in Twitter Social Media Using Long Short-Term Memory (LSTM) and Fast Text Traffic Light Automation with Camera Tracker and Microphone to Recognize Ambulance Using the HAAR Cascade Classifier Method Message Security Using Rivest-Shamir-Adleman Cryptography and Least Significant Bit Steganography with Video Platform An Automatic Sliding Doors Using RFID and Arduino An Implementation of MMS Steganography With The LSB Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1