Activity Pattern Discovery from Network Captures

Alan C. Lin, Gilbert L. Peterson
{"title":"Activity Pattern Discovery from Network Captures","authors":"Alan C. Lin, Gilbert L. Peterson","doi":"10.1109/SPW.2016.22","DOIUrl":null,"url":null,"abstract":"Investigating insider threat cases is challenging because activities are conducted with legitimate access that makes distinguishing malicious activities from normal activities difficult. To assist with identifying non-normal activities, we propose using two types of pattern discovery to identify a person's behavioral patterns in network data. The behavioral patterns serve to deemphasize normal behavior so that insider threat investigations can focus attention on potentially more relevant. Results from a controlled experiment demonstrate the highlighting of a suspicious event through the reduction of events belonging to discovered patterns.","PeriodicalId":341207,"journal":{"name":"2016 IEEE Security and Privacy Workshops (SPW)","volume":"422 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Security and Privacy Workshops (SPW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPW.2016.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Investigating insider threat cases is challenging because activities are conducted with legitimate access that makes distinguishing malicious activities from normal activities difficult. To assist with identifying non-normal activities, we propose using two types of pattern discovery to identify a person's behavioral patterns in network data. The behavioral patterns serve to deemphasize normal behavior so that insider threat investigations can focus attention on potentially more relevant. Results from a controlled experiment demonstrate the highlighting of a suspicious event through the reduction of events belonging to discovered patterns.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从网络捕获中发现活动模式
调查内部威胁案例具有挑战性,因为活动是通过合法访问进行的,这使得区分恶意活动和正常活动变得困难。为了帮助识别非正常活动,我们建议使用两种类型的模式发现来识别网络数据中的个人行为模式。这些行为模式弱化了对正常行为的重视,这样内部威胁调查就可以把注意力集中在可能更相关的事情上。一个对照实验的结果表明,通过减少属于发现模式的事件来突出可疑事件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Semi-Automated Methodology for Extracting Access Control Rules from the European Data Protection Directive A Critical Analysis of Privacy Design Strategies At Your Fingertips: Considering Finger Distinctness in Continuous Touch-Based Authentication for Mobile Devices Investigating Airplane Safety and Security Against Insider Threats Using Logical Modeling A Model-Based Approach to Predicting the Performance of Insider Threat Detection Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1