{"title":"VODCA2GPP - A new global, long-term (1988-2020) GPP dataset from microwave remote sensing","authors":"Benjamin Wild","doi":"10.34726/HSS.2021.92443","DOIUrl":null,"url":null,"abstract":"Abstract. Long-term global monitoring of terrestrial Gross Primary Production (GPP) is crucial for assessing ecosystem response to global climate change. In recent years and decades, great advances in estimating GPP on a global level have been made and many global GPP datasets have been published. These global data records are either based on observations from optical remote sensing, are upscaled from in situ measurements, or rely on process-based models. The different estimation approaches are well established within the scientific community but also exhibit significant discrepancies among each other. Here, we introduce the new VODCA2GPP dataset, which utilizes microwave remote sensing estimates of Vegetation Optical Depth (VOD) to estimate GPP on a global scale. VODCA2GPP is able to complement existing products with long-term GPP estimates covering the period 1988–2020. VODCA2GPP applies a previously developed carbon sink-driven approach (Teubner et al., 2019, 2021) to estimate GPP from the Vegetation Optical Depth Climate Archive (Zotta et al., in prep.; Moesinger et al., 2020), which merges VOD observations from multiple sensors into one long-running, coherent data record. VODCA2GPP was trained and evaluated against FLUXNET in situ observations of GPP and assessed against largely independent state-of-the art GPP datasets (MODIS GPP, FLUXCOM GPP, and GPP estimates from the TRENDY-v7 model ensemble). These assessments show that VODCA2GPP exhibits very similar spatial patterns compared to existing GPP datasets across all biomes but with a consistent positive bias. In terms of temporal dynamics, a high agreement was found for regions outside the humid tropics, with median correlations around 0.75. Concerning anomalies from the long-term climatology, VODCA2GPP correlates well with MODIS and TRENDY-v7 GPP (Pearson’s r: 0.53 and 0.61) but less with FLUXCOM GPP (Pearson’s r: 0.29). A trend analysis for the period 1988–2019 did not exhibit a significant trend in VODCA2GPP on a global scale but rather suggests regionally differing long-term changes in GPP. Significant similar increases of global GPP that were found for VODCA2GPP, MODIS GPP, and the TRENDY-v7 ensemble for the shorter overlapping observation period (2003–2015) supports the theory of elevated CO2 uptake potentially induced by increased atmospheric CO2 concentrations and the associated rising temperatures. The VODCA2GPP dataset is available at TU Data ( https://doi.org/10.48436/1k7aj-bdz35 ; Wild et al., 2021).","PeriodicalId":326085,"journal":{"name":"Earth System Science Data Discussions","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth System Science Data Discussions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34726/HSS.2021.92443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract. Long-term global monitoring of terrestrial Gross Primary Production (GPP) is crucial for assessing ecosystem response to global climate change. In recent years and decades, great advances in estimating GPP on a global level have been made and many global GPP datasets have been published. These global data records are either based on observations from optical remote sensing, are upscaled from in situ measurements, or rely on process-based models. The different estimation approaches are well established within the scientific community but also exhibit significant discrepancies among each other. Here, we introduce the new VODCA2GPP dataset, which utilizes microwave remote sensing estimates of Vegetation Optical Depth (VOD) to estimate GPP on a global scale. VODCA2GPP is able to complement existing products with long-term GPP estimates covering the period 1988–2020. VODCA2GPP applies a previously developed carbon sink-driven approach (Teubner et al., 2019, 2021) to estimate GPP from the Vegetation Optical Depth Climate Archive (Zotta et al., in prep.; Moesinger et al., 2020), which merges VOD observations from multiple sensors into one long-running, coherent data record. VODCA2GPP was trained and evaluated against FLUXNET in situ observations of GPP and assessed against largely independent state-of-the art GPP datasets (MODIS GPP, FLUXCOM GPP, and GPP estimates from the TRENDY-v7 model ensemble). These assessments show that VODCA2GPP exhibits very similar spatial patterns compared to existing GPP datasets across all biomes but with a consistent positive bias. In terms of temporal dynamics, a high agreement was found for regions outside the humid tropics, with median correlations around 0.75. Concerning anomalies from the long-term climatology, VODCA2GPP correlates well with MODIS and TRENDY-v7 GPP (Pearson’s r: 0.53 and 0.61) but less with FLUXCOM GPP (Pearson’s r: 0.29). A trend analysis for the period 1988–2019 did not exhibit a significant trend in VODCA2GPP on a global scale but rather suggests regionally differing long-term changes in GPP. Significant similar increases of global GPP that were found for VODCA2GPP, MODIS GPP, and the TRENDY-v7 ensemble for the shorter overlapping observation period (2003–2015) supports the theory of elevated CO2 uptake potentially induced by increased atmospheric CO2 concentrations and the associated rising temperatures. The VODCA2GPP dataset is available at TU Data ( https://doi.org/10.48436/1k7aj-bdz35 ; Wild et al., 2021).