Chunghan Lee, Kentaro Ebisawa, H. Kuwata, M. Kohno, S. Matsushima
{"title":"Performance Evaluation of GTP-U and SRv6 Stateless Translation","authors":"Chunghan Lee, Kentaro Ebisawa, H. Kuwata, M. Kohno, S. Matsushima","doi":"10.23919/CNSM46954.2019.9012725","DOIUrl":null,"url":null,"abstract":"The GPRS Tunneling Protocol User Plane (GTP-U) has long been deployed for GSM, UMTS and 4G LTE. Now for 5G, IPv6 Segment Routing (SRv6) has been proposed as an alternative user plane protocol to GTP-U in both 3GPP and IETF. SRv6 based on source routing has many advantages: stateless traffic steering, network programming and so on. Despite the advantages, it is hard to expect to replace GTP-U by SRv6 all at once, even in a 5G deployment because of a lot of dependencies between 3GPP nodes. Therefore, stateless translation and coexistence with GTP-U have been proposed in IETF. However there are no suitable measurement platform and performance evaluation results between GTP-U and SRv6. In particular, it is hard to measure latency on commercial traffic generators when a receiving packet type is different from a sending packet type. In this paper, we focus on the performance evaluation between GTP-U and SRv6 stateless translation. We designed an SRv6 measurement platform using a programmable switch, and measured GTP-U and SRv6 functions with pre-defined scenarios on a local environment. Well-known performance metrics, such as throughput and packets per second (PPS), are measured by the traffic generator while the latency at the functions was measured using telemetry on our SRv6 platform. In our evaluation, we cannot find the abrupt performance drop of well-known metrics at SRv6 stateless translation. Moreover, the latency of SRv6 stateless translation is similar to GTP-U and their performance degradation is negligible. Through the evaluation results, it is obvious that the SRv6 stateless translation is acceptable to the 5G user plane.","PeriodicalId":273818,"journal":{"name":"2019 15th International Conference on Network and Service Management (CNSM)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 15th International Conference on Network and Service Management (CNSM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CNSM46954.2019.9012725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
The GPRS Tunneling Protocol User Plane (GTP-U) has long been deployed for GSM, UMTS and 4G LTE. Now for 5G, IPv6 Segment Routing (SRv6) has been proposed as an alternative user plane protocol to GTP-U in both 3GPP and IETF. SRv6 based on source routing has many advantages: stateless traffic steering, network programming and so on. Despite the advantages, it is hard to expect to replace GTP-U by SRv6 all at once, even in a 5G deployment because of a lot of dependencies between 3GPP nodes. Therefore, stateless translation and coexistence with GTP-U have been proposed in IETF. However there are no suitable measurement platform and performance evaluation results between GTP-U and SRv6. In particular, it is hard to measure latency on commercial traffic generators when a receiving packet type is different from a sending packet type. In this paper, we focus on the performance evaluation between GTP-U and SRv6 stateless translation. We designed an SRv6 measurement platform using a programmable switch, and measured GTP-U and SRv6 functions with pre-defined scenarios on a local environment. Well-known performance metrics, such as throughput and packets per second (PPS), are measured by the traffic generator while the latency at the functions was measured using telemetry on our SRv6 platform. In our evaluation, we cannot find the abrupt performance drop of well-known metrics at SRv6 stateless translation. Moreover, the latency of SRv6 stateless translation is similar to GTP-U and their performance degradation is negligible. Through the evaluation results, it is obvious that the SRv6 stateless translation is acceptable to the 5G user plane.