HALO: A Hierarchical Memory Access Locality Modeling Technique For Memory System Explorations

Reena Panda, L. John
{"title":"HALO: A Hierarchical Memory Access Locality Modeling Technique For Memory System Explorations","authors":"Reena Panda, L. John","doi":"10.1145/3205289.3205323","DOIUrl":null,"url":null,"abstract":"Growing complexity of applications pose new challenges to memory system design due to their data intensive nature, complex access patterns, larger footprints, etc. The slow nature of full-system simulators, challenges of simulators to run deep software stacks of many emerging workloads, proprietary nature of software, etc. pose challenges to fast and accurate microarchitectural explorations of future memory hierarchies. One technique to mitigate this problem is to create spatio-temporal models of access streams and use them to explore memory system tradeoffs. However, existing memory stream models have weaknesses such as they only model temporal locality behavior or model spatio-temporal locality using global stride transitions, resulting in high storage/metadata overhead. In this paper, we propose HALO, a Hierarchical memory Access LOcality modeling technique that identifies patterns by isolating global memory references into localized streams and further zooming into each local stream capturing multi-granularity spatial locality patterns. HALO also models the interleaving degree between localized stream accesses leveraging coarse-grained reuse locality. We evaluate HALO's effectiveness in replicating original application performance using over 20K different memory system configurations and show that HALO achieves over 98.3%, 95.6%, 99.3% and 96% accuracy in replicating performance of prefetcher-enabled L1 & L2 caches, TLB and DRAM respectively. HALO outperforms the state-of-the-art memory cloning schemes, WEST and STM, while using ~39X less metadata storage than STM.","PeriodicalId":441217,"journal":{"name":"Proceedings of the 2018 International Conference on Supercomputing","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 International Conference on Supercomputing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3205289.3205323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Growing complexity of applications pose new challenges to memory system design due to their data intensive nature, complex access patterns, larger footprints, etc. The slow nature of full-system simulators, challenges of simulators to run deep software stacks of many emerging workloads, proprietary nature of software, etc. pose challenges to fast and accurate microarchitectural explorations of future memory hierarchies. One technique to mitigate this problem is to create spatio-temporal models of access streams and use them to explore memory system tradeoffs. However, existing memory stream models have weaknesses such as they only model temporal locality behavior or model spatio-temporal locality using global stride transitions, resulting in high storage/metadata overhead. In this paper, we propose HALO, a Hierarchical memory Access LOcality modeling technique that identifies patterns by isolating global memory references into localized streams and further zooming into each local stream capturing multi-granularity spatial locality patterns. HALO also models the interleaving degree between localized stream accesses leveraging coarse-grained reuse locality. We evaluate HALO's effectiveness in replicating original application performance using over 20K different memory system configurations and show that HALO achieves over 98.3%, 95.6%, 99.3% and 96% accuracy in replicating performance of prefetcher-enabled L1 & L2 caches, TLB and DRAM respectively. HALO outperforms the state-of-the-art memory cloning schemes, WEST and STM, while using ~39X less metadata storage than STM.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于内存系统探索的分层内存访问局部性建模技术
由于应用程序的数据密集性、复杂的访问模式、更大的占用空间等,应用程序的复杂性日益增加,对内存系统设计提出了新的挑战。全系统模拟器的缓慢特性,模拟器运行许多新兴工作负载的深层软件堆栈的挑战,软件的专有特性等,对未来内存层次结构的快速和准确的微架构探索提出了挑战。缓解这个问题的一种技术是创建访问流的时空模型,并使用它们来探索内存系统的权衡。然而,现有的内存流模型存在弱点,例如它们只模拟时间局部性行为或使用全局跨距转换来模拟时空局部性,从而导致高存储/元数据开销。在本文中,我们提出了HALO,这是一种分层内存访问局部性建模技术,它通过将全局内存引用隔离到局部流中并进一步放大到每个局部流中捕获多粒度空间局部性模式来识别模式。HALO还利用粗粒度重用局部性对本地化流访问之间的交错程度进行建模。我们使用超过20K的不同内存系统配置评估了HALO在复制原始应用程序性能方面的有效性,并表明HALO在复制启用了预取器的L1和L2缓存、TLB和DRAM的性能方面分别达到了98.3%、95.6%、99.3%和96%的准确性。HALO优于最先进的内存克隆方案WEST和STM,同时使用的元数据存储比STM少39X。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ComPEND CELIA PA-SSD: A Page-Type Aware TLC SSD for Improved Write/Read Performance and Storage Efficiency GRU Sculptor: Flexible Approximation with Selective Dynamic Loop Perforation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1