Deep Learning Enhanced Joint Geophysical Inversion for Crosswell Monitoring

Yanyan Hu, Yuchen Jin, Xuqing Wu, Jiefu Chen, Jiuping Chen, Qiuyang Shen, Yueqin Huang
{"title":"Deep Learning Enhanced Joint Geophysical Inversion for Crosswell Monitoring","authors":"Yanyan Hu, Yuchen Jin, Xuqing Wu, Jiefu Chen, Jiuping Chen, Qiuyang Shen, Yueqin Huang","doi":"10.23919/USNC-URSINRSM51531.2021.9336470","DOIUrl":null,"url":null,"abstract":"A deep learning enhanced framework is proposed to jointly invert the crosswell DC resistivity and seismic travel time data. With the strong capability to extract the implicit patterns of the input data, our deep neural network is trained to fuse and extract the connections between separately inverted resistivity and velocity models by the conventional methods, while the structural similarity is imposed by letting the outputs of network approach the true resistivity and velocity models with the same structures. In the joint inversion framework, the well-trained network is adopted in an iterative way to generate the enhanced resistivity and velocity models to perform as the inputs for next round of inversion. Moreover, under our framework, multiple geophysical data can be used simultaneously to jointly invert the corresponding multiple properties. Numerical simulation demonstrates an improved accuracy of our method.","PeriodicalId":180982,"journal":{"name":"2021 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/USNC-URSINRSM51531.2021.9336470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A deep learning enhanced framework is proposed to jointly invert the crosswell DC resistivity and seismic travel time data. With the strong capability to extract the implicit patterns of the input data, our deep neural network is trained to fuse and extract the connections between separately inverted resistivity and velocity models by the conventional methods, while the structural similarity is imposed by letting the outputs of network approach the true resistivity and velocity models with the same structures. In the joint inversion framework, the well-trained network is adopted in an iterative way to generate the enhanced resistivity and velocity models to perform as the inputs for next round of inversion. Moreover, under our framework, multiple geophysical data can be used simultaneously to jointly invert the corresponding multiple properties. Numerical simulation demonstrates an improved accuracy of our method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的井间监测联合地球物理反演
提出了一种深度学习增强框架,用于联合反演井间直流电阻率和地震走时数据。我们的深度神经网络具有较强的提取输入数据隐式模式的能力,通过常规方法对单独倒置的电阻率和速度模型进行融合和提取,同时通过使网络输出接近具有相同结构的真实电阻率和速度模型来实现结构相似性。在联合反演框架中,采用迭代的方式,利用训练好的网络生成增强的电阻率和速度模型,作为下一轮反演的输入。此外,在我们的框架下,可以同时使用多个地球物理数据来联合反演相应的多个属性。数值模拟结果表明,该方法具有较高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design of a Non-Reciprocal Reconfigurable Phase Shifter for Phased Array Applications Curving Effect on The Curved Trapezoid Patch for On-Wrist Power Harvesting at 2.45 GHz U.S. National Committee Leadership and Commission Chairs (2018-2021) Antenna Comparison for Additive Manufacturing versus Traditional Manufacturing Methods Lossy Beam Generation of Circular Arrays
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1