Motion recovery from image sequences using First-order optical flow information

S. Negahdaripour, S. Lee
{"title":"Motion recovery from image sequences using First-order optical flow information","authors":"S. Negahdaripour, S. Lee","doi":"10.1109/WVM.1991.212778","DOIUrl":null,"url":null,"abstract":"A closed-form solution for motion estimation from first-order flow in two 'distinct' image regions is described. Uniqueness is guaranteed when these correspond to surface patches with different normal vectors. given an image sequence, the authors show how the image many be segmented into regions with the necessary properties, optical flow is computed for these regions, and motion parameters are computed. The method can be applied to arbitrary scenes and camera motion. The authors explain why it is more robust than other techniques that require the knowledge of the full flow or information up to the second-order terms of it. Experimental results are presented to support the theoretical derivations.<<ETX>>","PeriodicalId":208481,"journal":{"name":"Proceedings of the IEEE Workshop on Visual Motion","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE Workshop on Visual Motion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WVM.1991.212778","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 52

Abstract

A closed-form solution for motion estimation from first-order flow in two 'distinct' image regions is described. Uniqueness is guaranteed when these correspond to surface patches with different normal vectors. given an image sequence, the authors show how the image many be segmented into regions with the necessary properties, optical flow is computed for these regions, and motion parameters are computed. The method can be applied to arbitrary scenes and camera motion. The authors explain why it is more robust than other techniques that require the knowledge of the full flow or information up to the second-order terms of it. Experimental results are presented to support the theoretical derivations.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用一阶光流信息从图像序列中恢复运动
描述了两个“不同”图像区域的一阶流运动估计的封闭解。当这些对应于具有不同法向量的表面斑块时,保证唯一性。给定一个图像序列,作者展示了如何将图像分割成具有必要属性的区域,计算这些区域的光流,并计算运动参数。该方法可以应用于任意场景和摄像机运动。作者解释了为什么它比其他技术更健壮,这些技术需要了解整个流程或信息的二阶项。实验结果支持了理论推导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Incremental estimation of image-flow using a Kalman filter Structure and motion in two dimensions from multiple images: a least squares approach An adaptive multi-scale approach for estimating optical flow: computational theory and physiological implementation Stability of phase information Motion tracking on the spatiotemporal surface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1