Multi-scroll attractor and its broken coexisting attractors in cyclic memristive neural network

Q. Lai, Yidan Chen
{"title":"Multi-scroll attractor and its broken coexisting attractors in cyclic memristive neural network","authors":"Q. Lai, Yidan Chen","doi":"10.1063/5.0159391","DOIUrl":null,"url":null,"abstract":"This paper proposes a simple-structured memristive neural network, which incorporates self-connections of memristor synapses alongside both unidirectional and bidirectional connections. Different from other multi-scroll chaotic systems, this network structure has a more concise three-neuron structure. This simple memristive neural network can generate a number of multi-scroll attractors in manageable quantities and shows the characteristics of the coexisting attractors and amplitude control. In particular, when the parameters are changed, the coexisting attractors break up around the center of gravity into two centrosymmetric chaotic attractors. Abundant dynamic behaviors are studied through phase portraits, bifurcation diagrams, Lyapunov exponents, and attraction basins. The feasibility of the system is demonstrated by building a circuit realization platform.","PeriodicalId":340975,"journal":{"name":"Chaos: An Interdisciplinary Journal of Nonlinear Science","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos: An Interdisciplinary Journal of Nonlinear Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0159391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a simple-structured memristive neural network, which incorporates self-connections of memristor synapses alongside both unidirectional and bidirectional connections. Different from other multi-scroll chaotic systems, this network structure has a more concise three-neuron structure. This simple memristive neural network can generate a number of multi-scroll attractors in manageable quantities and shows the characteristics of the coexisting attractors and amplitude control. In particular, when the parameters are changed, the coexisting attractors break up around the center of gravity into two centrosymmetric chaotic attractors. Abundant dynamic behaviors are studied through phase portraits, bifurcation diagrams, Lyapunov exponents, and attraction basins. The feasibility of the system is demonstrated by building a circuit realization platform.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
循环记忆神经网络中的多涡旋吸引子及其破碎共存吸引子
本文提出了一种结构简单的忆阻神经网络,它将忆阻突触的自连接与单向和双向连接结合在一起。与其他多涡旋混沌系统不同,该网络结构具有更简洁的三神经元结构。这种简单的记忆神经网络可以产生数量可控的多涡旋吸引子,并表现出吸引子与幅值控制共存的特点。特别是当参数改变时,共存的吸引子在重心周围分裂成两个中心对称的混沌吸引子。通过相图、分岔图、李亚普诺夫指数和吸引盆地研究了丰富的动力学行为。通过搭建电路实现平台,验证了系统的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Li–Yorke chaos of linear differential equations in a finite-dimensional space with a weak topology Correlations between COVID-19 cases and temperature, air humidity, and social isolating rate with cross wavelet transform and wavelet coherence: Case study of New York and São Paulo cities Symbolic regression via neural networks A bottom-up approach for recurrence detection based on sampling distance Zig-zag structures in silver dichromate precipitate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1