Stochastic Modeling and Analysis of Automotive Wire Harness Based on Machine Learning and Polynomial Chaos Method

T. Sekine, S. Usuki, K. Miura
{"title":"Stochastic Modeling and Analysis of Automotive Wire Harness Based on Machine Learning and Polynomial Chaos Method","authors":"T. Sekine, S. Usuki, K. Miura","doi":"10.1109/EMCEurope51680.2022.9901033","DOIUrl":null,"url":null,"abstract":"This paper proposes a method based on machine learning technique and polynomial chaos (PC) method to model and analyze the stochastic behavior of an automotive wire harness. In this research, we assume that the automotive wire harness is a bundle of wires above a conductor plane, and its behavior can be represented by stochastic transmission line equations. First, the proposed method constructs the regression models related to per-unit-length (p.u.l.) parameters by means of a machine learning technique. Then, the stochastic transmission line equations including the regression models are approximated using orthonormal polynomials through a PC formulation. Since the regression models correlate the geometric and shape parameters of the wires and the p.u.l. parameters, PC expansion coefficients can efficiently be calculated. We adopt three types of regression models and compare them to investigate the performance of the proposed method.","PeriodicalId":268262,"journal":{"name":"2022 International Symposium on Electromagnetic Compatibility – EMC Europe","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Symposium on Electromagnetic Compatibility – EMC Europe","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMCEurope51680.2022.9901033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a method based on machine learning technique and polynomial chaos (PC) method to model and analyze the stochastic behavior of an automotive wire harness. In this research, we assume that the automotive wire harness is a bundle of wires above a conductor plane, and its behavior can be represented by stochastic transmission line equations. First, the proposed method constructs the regression models related to per-unit-length (p.u.l.) parameters by means of a machine learning technique. Then, the stochastic transmission line equations including the regression models are approximated using orthonormal polynomials through a PC formulation. Since the regression models correlate the geometric and shape parameters of the wires and the p.u.l. parameters, PC expansion coefficients can efficiently be calculated. We adopt three types of regression models and compare them to investigate the performance of the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习和多项式混沌方法的汽车线束随机建模与分析
提出了一种基于机器学习技术和多项式混沌(PC)方法的汽车线束随机行为建模与分析方法。在本研究中,我们假设汽车线束是导体平面上的一束导线,其行为可以用随机传输线方程来表示。首先,该方法利用机器学习技术构建了与单位长度参数相关的回归模型。然后,通过PC公式,用正交多项式逼近包含回归模型的随机传输线方程。由于回归模型将线材的几何和形状参数与线材pul参数相关联,因此可以有效地计算出PC膨胀系数。我们采用三种类型的回归模型,并比较它们来研究所提出的方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Combining 2oo3 Voting and Hamming Error Correction to Reduce the Occurrence of False Negatives in Wired Communication Lines under Continuous-Wave Electromagnetic Disturbances Time-domain Multitone Impedance Measurement System for Space Applications Lumped Circuit Model for Concentrically Arranged Conductors in Power Electronic Systems On Excitation Periodicity in Continuously Stirred Reverberation Chambers Inverter Interference on Charging Communication System during 400 V DC Charging of Vehicle
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1