Analysis of 5G New Radio Waveform as an Illuminator of Opportunity for Passive Bistatic Radar

Purushottama Lingadevaru, Bethi Pardhasaradhi, P. Srihari, G. Sharma
{"title":"Analysis of 5G New Radio Waveform as an Illuminator of Opportunity for Passive Bistatic Radar","authors":"Purushottama Lingadevaru, Bethi Pardhasaradhi, P. Srihari, G. Sharma","doi":"10.1109/NCC52529.2021.9530026","DOIUrl":null,"url":null,"abstract":"Passive radar detects targets using the reflections of electromagnetic signals illuminated by unintended sources of opportunity in the given surveillance region. The illuminators of opportunity (IOO) like FM, DVB, DAB, LTE, WiMax, and radio frequency signals are used for the passive radar depending on the availability, frequency of operation and, type of application. This paper proposes the upcoming 5G New Radio waveform (5G NR) as an IOO for passive bistatic radar. The 5G NR waveform is used to perform parametric analysis of passive bistatic radar. The radar parameters like range resolution, velocity resolution, range product, maximum unambiguous PRF, and Cassini's ovals are investigated. Further, the 5G NR IOO is compared against existing LTE and other IOOs. Simulation results reveals that all the radar parameters are outperforming for the 5G NR waveform, claiming that 5G NR is a potential candidate for the future IOO.","PeriodicalId":414087,"journal":{"name":"2021 National Conference on Communications (NCC)","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 National Conference on Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC52529.2021.9530026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Passive radar detects targets using the reflections of electromagnetic signals illuminated by unintended sources of opportunity in the given surveillance region. The illuminators of opportunity (IOO) like FM, DVB, DAB, LTE, WiMax, and radio frequency signals are used for the passive radar depending on the availability, frequency of operation and, type of application. This paper proposes the upcoming 5G New Radio waveform (5G NR) as an IOO for passive bistatic radar. The 5G NR waveform is used to perform parametric analysis of passive bistatic radar. The radar parameters like range resolution, velocity resolution, range product, maximum unambiguous PRF, and Cassini's ovals are investigated. Further, the 5G NR IOO is compared against existing LTE and other IOOs. Simulation results reveals that all the radar parameters are outperforming for the 5G NR waveform, claiming that 5G NR is a potential candidate for the future IOO.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
5G新无线电波形作为无源双基地雷达的照明机会分析
无源雷达利用给定监视区域内意外机会源照射的电磁信号的反射来探测目标。如FM, DVB, DAB, LTE, WiMax和射频信号等机会照明器(IOO)用于无源雷达,具体取决于可用性,操作频率和应用类型。本文提出了即将到来的5G新无线电波形(5G NR)作为被动双基地雷达的IOO。利用5G NR波形对无源双基地雷达进行参数分析。研究了距离分辨率、速度分辨率、距离积、最大无模糊PRF和卡西尼椭圆等雷达参数。此外,还将5G NR IOO与现有的LTE和其他IOO进行比较。仿真结果表明,所有雷达参数都优于5G NR波形,表明5G NR是未来IOO的潜在候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Biomedical Image Retrieval using Muti-Scale Local Bit-plane Arbitrary Shaped Patterns Forensics of Decompressed JPEG Color Images Based on Chroma Subsampling Optimized Bio-inspired Spiking Neural Models based Anatomical and Functional Neurological Image Fusion in NSST Domain Improved Hankel Norm Criterion for Interfered Nonlinear Digital Filters Subjected to Hardware Constraints The Capacity of Photonic Erasure Channels with Detector Dead Times
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1