{"title":"Outline of a Proof of the Equivariant de Rham Theorem","authors":"L. Tu","doi":"10.2307/j.ctvrdf1gz.28","DOIUrl":null,"url":null,"abstract":"This chapter offers an outline of a proof of the equivariant de Rham theorem. In 1950, Henri Cartan proved that the cohomology of the base of a principal G-bundle for a connected Lie group G can be computed from the Weil model of the total space. From Cartan's theorem it is not too difficult to deduce the equivariant de Rham theorem for a free action. Guillemin and Sternberg presents an algebraic proof of the equivariant de Rham theorem, although some details appear to be missing. Guillemin, Ginzburg, and Karshon outline in an appendix of be missing. Guillemin, Ginzburg, and Karshon outline in an appendix of a different approach using the Mayer–Vietoris argument. A limitation of the Mayer–Vietoris argument is that it applies only to manifolds with a finite good cover. The chapter provides a proof of the general case with no restrictions on the manifold and with all the details.","PeriodicalId":272846,"journal":{"name":"Introductory Lectures on Equivariant Cohomology","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Introductory Lectures on Equivariant Cohomology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/j.ctvrdf1gz.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This chapter offers an outline of a proof of the equivariant de Rham theorem. In 1950, Henri Cartan proved that the cohomology of the base of a principal G-bundle for a connected Lie group G can be computed from the Weil model of the total space. From Cartan's theorem it is not too difficult to deduce the equivariant de Rham theorem for a free action. Guillemin and Sternberg presents an algebraic proof of the equivariant de Rham theorem, although some details appear to be missing. Guillemin, Ginzburg, and Karshon outline in an appendix of be missing. Guillemin, Ginzburg, and Karshon outline in an appendix of a different approach using the Mayer–Vietoris argument. A limitation of the Mayer–Vietoris argument is that it applies only to manifolds with a finite good cover. The chapter provides a proof of the general case with no restrictions on the manifold and with all the details.