A Hyperheuristic Approach for Constraint Solving

Broderick Crawford, Carlos Castro, É. Monfroy
{"title":"A Hyperheuristic Approach for Constraint Solving","authors":"Broderick Crawford, Carlos Castro, É. Monfroy","doi":"10.1109/CERMA.2010.99","DOIUrl":null,"url":null,"abstract":"In this work we propose a Choice Function for guiding Constraint Programming in the resolution of Constraint Satisfaction Problems. We exploit some search process features to select on the fly the Enumeration Strategy (Variable + Value Selection Heuristics) in order to more efficiently solve the problem at hand. The main novelty of our approach is that we reconfigure the search based solely on performance data gathered while solving the current problem. We report encouraging results where our combination of strategies outperforms the use of individual strategies.","PeriodicalId":119218,"journal":{"name":"2010 IEEE Electronics, Robotics and Automotive Mechanics Conference","volume":"451 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Electronics, Robotics and Automotive Mechanics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CERMA.2010.99","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this work we propose a Choice Function for guiding Constraint Programming in the resolution of Constraint Satisfaction Problems. We exploit some search process features to select on the fly the Enumeration Strategy (Variable + Value Selection Heuristics) in order to more efficiently solve the problem at hand. The main novelty of our approach is that we reconfigure the search based solely on performance data gathered while solving the current problem. We report encouraging results where our combination of strategies outperforms the use of individual strategies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
约束求解的超启发式方法
在这项工作中,我们提出了一个选择函数来指导约束规划解决约束满足问题。为了更有效地解决手头的问题,我们利用一些搜索过程的特征来动态地选择枚举策略(变量+值选择启发式)。我们的方法的主要新颖之处在于,我们仅根据解决当前问题时收集的性能数据重新配置搜索。我们报告了令人鼓舞的结果,我们的组合策略优于使用单个策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
OntoDeviceTrust: A Representation Model of Trust between the Users of Mobile Devices and the Producers of Applications Based on Ontologies Defect Detection in Aluminium with an Eddy Currents Sensor Advise Weaving in Énfasis Kinematic and Dynamic Modeling of the PHANToM Premium 1.0 Haptic Device: Experimental Validation Dynamic Visual Servoing of Robot Manipulators Based on Passivity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1