{"title":"Hrnet: Hamiltonian Rescaling Network for Image Downscaling","authors":"Y. Chen, Xi Xiao, Tao Dai, Shutao Xia","doi":"10.1109/ICIP40778.2020.9190729","DOIUrl":null,"url":null,"abstract":"Image downscaling has become a classical problem in image processing and has recently connected to image super-resolution (SR), which restores high-quality images from low-resolution ones generated by predetermined downscaling kernels (e.g., bicubic). However, most existing image downscaling methods are deterministic and lose information during the downscaling process, while rarely designing specific downscaling methods for image SR. In this paper, we propose a novel learning-based image downscaling method, Hamiltonian Rescaling Network (HRNet). The design of HRNet is based on the discretization of Hamiltonian System, a pair of iterative updating equations, which formulate a mechanism of iterative correction of the error caused by information missing during image or feature downscaling. Extensive experiments demonstrate the effectiveness of our proposed method in terms of both quantitative and qualitative results.","PeriodicalId":405734,"journal":{"name":"2020 IEEE International Conference on Image Processing (ICIP)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP40778.2020.9190729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Image downscaling has become a classical problem in image processing and has recently connected to image super-resolution (SR), which restores high-quality images from low-resolution ones generated by predetermined downscaling kernels (e.g., bicubic). However, most existing image downscaling methods are deterministic and lose information during the downscaling process, while rarely designing specific downscaling methods for image SR. In this paper, we propose a novel learning-based image downscaling method, Hamiltonian Rescaling Network (HRNet). The design of HRNet is based on the discretization of Hamiltonian System, a pair of iterative updating equations, which formulate a mechanism of iterative correction of the error caused by information missing during image or feature downscaling. Extensive experiments demonstrate the effectiveness of our proposed method in terms of both quantitative and qualitative results.