Liquid Opacity Detection Method Based on Bidimensional Empirical Mode Decomposition

{"title":"Liquid Opacity Detection Method Based on Bidimensional Empirical Mode Decomposition","authors":"Guo Qiang, Song Wen-ming","doi":"10.1109/IMCCC.2013.277","DOIUrl":null,"url":null,"abstract":"According to the problem that liquid turbidity detection is vulnerable to the noise, a novel liquid turbidity detection method based on Bidimensional Empirical Mode Decomposition (BEMD) and Robert operator is proposed. The key part of method is the BEMD algorithm, with which, liquid images can be decomposed to several Intrinsic Mode Functions (IMFs), then we can use Robert operator to detect the edge of each IMF to reconstruct the image edges selectively for highlighting edge details of the liquid and impurity. Experimental results show that the method presented can reduce the influence of random noise on the turbidity detection effectively, and improve the accuracy of turbidity detection.","PeriodicalId":360796,"journal":{"name":"2013 Third International Conference on Instrumentation, Measurement, Computer, Communication and Control","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Third International Conference on Instrumentation, Measurement, Computer, Communication and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMCCC.2013.277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

According to the problem that liquid turbidity detection is vulnerable to the noise, a novel liquid turbidity detection method based on Bidimensional Empirical Mode Decomposition (BEMD) and Robert operator is proposed. The key part of method is the BEMD algorithm, with which, liquid images can be decomposed to several Intrinsic Mode Functions (IMFs), then we can use Robert operator to detect the edge of each IMF to reconstruct the image edges selectively for highlighting edge details of the liquid and impurity. Experimental results show that the method presented can reduce the influence of random noise on the turbidity detection effectively, and improve the accuracy of turbidity detection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于二维经验模态分解的液体不透明度检测方法
针对液体浑浊度检测易受噪声影响的问题,提出了一种基于二维经验模态分解(BEMD)和Robert算子的液体浑浊度检测方法。该方法的关键部分是BEMD算法,该算法将液体图像分解为若干个内禀模态函数(IMFs),然后利用Robert算子检测每个内禀模态函数的边缘,有选择地重建图像边缘,突出液体和杂质的边缘细节。实验结果表明,该方法能有效降低随机噪声对浑浊度检测的影响,提高浑浊度检测的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
相关文献
Image Decomposition Based on a Modified Bidimensional Empirical Mode Decomposition Method
IF 0 Applied Mechanics and MaterialsPub Date : 2014-01-16 DOI: 10.4028/www.scientific.net/AMM.496-500.1931
Cheng Wang
Application of Bidimensional Empirical Mode Decomposition to Medical Liquid Opacity Detection
IF 0 Applied Mechanics and MaterialsPub Date : 2011-10-01 DOI: 10.4028/www.scientific.net/AMM.128-129.530
Jian Wan, Yuanda Diao, Dongyang Yan, Qiang Guo, Z. Qu
An Image Watermarking Method Based on Bidimensional Empirical Mode Decomposition
IF 0 2008 Congress on Image and Signal ProcessingPub Date : 2008-05-27 DOI: 10.1109/CISP.2008.717
Jalil Taghia, M. Doostari, Jalal Taghia
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on Cognitive Making Decision Engine Authentication Protocol of RFID System Based on Security Policy Optimal Dispatch Considering the Ability of Active Power Control of Wind Farms Hardware Architecture Design of Image Preprocessing and Phase Calculating Algorithms Based on FPGA An Algorithm for Detecting Lines Based on Primitive Connection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1