Micro-transfer Printing of GaN HEMTs for Heterogeneous Integration and Flexible RF Circuit Design

B. Downey, A. Xie, S. Mack, D. Katzer, J. Champlain, Yu Cao, N. Nepal, T. A. Growden, V. Gokhale, R. Coffie, M. Hardy, E. Beam, Cathy Lee, D. Meyer
{"title":"Micro-transfer Printing of GaN HEMTs for Heterogeneous Integration and Flexible RF Circuit Design","authors":"B. Downey, A. Xie, S. Mack, D. Katzer, J. Champlain, Yu Cao, N. Nepal, T. A. Growden, V. Gokhale, R. Coffie, M. Hardy, E. Beam, Cathy Lee, D. Meyer","doi":"10.1109/DRC50226.2020.9135179","DOIUrl":null,"url":null,"abstract":"Heterogeneous integration of complementary materials and device technologies is a demonstrated pathway for meeting the demand for next generation RF and mixed-signal circuits and has historically been accomplished via chip or circuit level wafer bonding and through-substrate vias [1] . A more intimate approach is integration at the device level via a micro-assembly technique such as micro-transfer printing [2] , which uses a polymer stamp to pick-and-place individual devices released from a source substrate to a multi-technology target substrate with micron-level alignment accuracy. This approach decouples the device technology from the growth substrate and enables technology agnostic circuit design and application-specific substrate choice. Here we demonstrate micro-transfer printing of GaN high-electron-mobility transistors (HEMTs) released from SiC growth substrates to other technologically relevant substrates such as Si and diamond. We show that there is no significant degradation in DC electrical characteristics after transfer printing, improved thermal performance can be achieved when the devices are transferred to single crystal diamond, and that post-transfer processing, such as interconnect metallization is possible with standard 2D lithographic techniques.","PeriodicalId":397182,"journal":{"name":"2020 Device Research Conference (DRC)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Device Research Conference (DRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC50226.2020.9135179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Heterogeneous integration of complementary materials and device technologies is a demonstrated pathway for meeting the demand for next generation RF and mixed-signal circuits and has historically been accomplished via chip or circuit level wafer bonding and through-substrate vias [1] . A more intimate approach is integration at the device level via a micro-assembly technique such as micro-transfer printing [2] , which uses a polymer stamp to pick-and-place individual devices released from a source substrate to a multi-technology target substrate with micron-level alignment accuracy. This approach decouples the device technology from the growth substrate and enables technology agnostic circuit design and application-specific substrate choice. Here we demonstrate micro-transfer printing of GaN high-electron-mobility transistors (HEMTs) released from SiC growth substrates to other technologically relevant substrates such as Si and diamond. We show that there is no significant degradation in DC electrical characteristics after transfer printing, improved thermal performance can be achieved when the devices are transferred to single crystal diamond, and that post-transfer processing, such as interconnect metallization is possible with standard 2D lithographic techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于异构集成和柔性射频电路设计的GaN hemt微转移打印
互补材料和器件技术的异质集成是满足下一代射频和混合信号电路需求的有效途径,历来通过芯片或电路级晶圆键合和基板通孔实现[1]。一种更亲密的方法是通过微组装技术(如微转移印刷[2])在器件级进行集成,该技术使用聚合物印记将单个器件从源基板释放到具有微米级校准精度的多技术目标基板上。这种方法将器件技术与生长基板分离,使电路设计与技术无关,并可选择特定于应用的基板。在这里,我们展示了从SiC生长衬底释放的GaN高电子迁移率晶体管(hemt)到其他技术相关衬底(如Si和金刚石)的微转移印刷。我们发现转移印刷后直流电气特性没有明显的退化,当器件转移到单晶金刚石时,热性能可以得到改善,并且转移后处理,例如互连金属化可以用标准的二维光刻技术实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Millimeter-Wave GaN Device Modeling for Power Amplifiers Reliability of Ferroelectric HfO2-based Memories: From MOS Capacitor to FeFET Linearity by Synthesis: An Intrinsically Linear AlGaN/GaN-on-Si Transistor with OIP3/(F-1)PDC of 10.1 at 30 GHz Stopping Resistance Drift in Phase Change Memory Cells Modeling Multi-states in Ferroelectric Tunnel Junction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1