M. B. Hani, H. Salameh, Y. Jararweh, A. Bousselham
{"title":"Traffic-aware self-coexistence management in IEEE 802.22 WRAN systems","authors":"M. B. Hani, H. Salameh, Y. Jararweh, A. Bousselham","doi":"10.1109/IEEEGCC.2013.6705831","DOIUrl":null,"url":null,"abstract":"Co-existence of different wireless networks and interference management are challenging problems in a Cognitive Radio (CR) environment. There are two different types of co-existence; incumbent co-existence (between licensed and unlicensed users) and self-coexistence (between secondary users in multiple overlapped Wireless Regional Area Networks (WRANs) cells). To overcome the self-coexistence problem in WRANs, many Fixed Channel Assignment (FCA) techniques have been proposed but without accounting for the cooperation overhead and the randomly time-varying traffic loads in different cells. In this paper, we investigate the self-coexistence problem between secondary users in overlapped WRAN cells with the objective of improving network performance by employing an adaptive traffic-aware channel allocation strategy. The proposed method provides interference-free environment with minimum cooperation overhead and attempts at guaranteeing pre-specified blocking probability requirements. Simulation results reveal that the proposed algorithm provides a significant enhancement on system performance in terms of the number of served requests.","PeriodicalId":316751,"journal":{"name":"2013 7th IEEE GCC Conference and Exhibition (GCC)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 7th IEEE GCC Conference and Exhibition (GCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEEGCC.2013.6705831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
Co-existence of different wireless networks and interference management are challenging problems in a Cognitive Radio (CR) environment. There are two different types of co-existence; incumbent co-existence (between licensed and unlicensed users) and self-coexistence (between secondary users in multiple overlapped Wireless Regional Area Networks (WRANs) cells). To overcome the self-coexistence problem in WRANs, many Fixed Channel Assignment (FCA) techniques have been proposed but without accounting for the cooperation overhead and the randomly time-varying traffic loads in different cells. In this paper, we investigate the self-coexistence problem between secondary users in overlapped WRAN cells with the objective of improving network performance by employing an adaptive traffic-aware channel allocation strategy. The proposed method provides interference-free environment with minimum cooperation overhead and attempts at guaranteeing pre-specified blocking probability requirements. Simulation results reveal that the proposed algorithm provides a significant enhancement on system performance in terms of the number of served requests.